Social Coordination and Network Formation with Heterogeneous Constraints

  • Qingchao Zeng
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


In this paper, we consider a co-evolutionary model of social coordination and network formation, where heterogeneous agents of two groups make a decision on action in a 2 × 2 coordination game as well as the population with whom they costly interact. Agents of two groups support different constraints of active links. We find that in the situation of low linking cost, the co-existence of payoff dominate and risk dominate absorbing sets is determined by the population size of each group and the number of agents choosing the efficient action, not the size of overall population. If the number of agents with larger constraints is relatively larger than the size of another group’s population, and if the smaller constraint is larger than the number of efficient players, co-existence of both absorbing sets is able to be observed.


  1. 1.
    Alós-Ferrer, C., Weidenholzer, S.: Imitation, local interactions, and efficiency. Econ. Lett. 93, 163–168 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alós-Ferrer, C., Weidenholzer, S.: Partial bandwagon effects and local interactions. Games Econ. Behav. 61, 1–19 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alós-Ferrer, C., Weidenholzer, S.: Contagion and efficiency. J. Econ. Theory 143, 251–274 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anwar, A.W.: On the co-existence of conventions. J. Econ. Theory 107, 145–155 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bala, V., Goyal, S.: A noncooperative model of network formation. Econometrica 5(68), 1181–1229 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bhaskar, V., Vega-Redondo, F.: Migration and the evolution of conventions. J. Econ. Behav. Organ. 13, 397–418 (2004)CrossRefGoogle Scholar
  7. 7.
    Blume, L.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5, 387–424 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blume, L.: The statistical mechanics of best-response strategy revision. Games Econ. Behav. 11, 111–145 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dieckmann, T.: The evolution of conventions with mobile players. J. Econ. Behav. Organ. 38, 93–111 (1993)CrossRefGoogle Scholar
  10. 10.
    Ellison, G.: Learning, local interaction, and coordination. Econometrica 61, 1047–1071 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ellison, G.: Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution. Rev. Econ. Stud. 67, 17–45 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ellison, G., Fudenberg, D.: Rules of thumb for social learning. Eur. J. Polit. Econ. 101, 612–643 (1993)CrossRefGoogle Scholar
  13. 13.
    Ellison, G., Fudenberg, D.: Word-of mouth communication and social learning. Q. J. Econ. 110:95–126 (1995)CrossRefGoogle Scholar
  14. 14.
    Ely, J.C.: Local conventions. Adv. Theor. Econ. 2, 1–30 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fosco, C., Mengel, F.: Cooperation through imitation and exclusion in networks. J. Econ. Dyn. Control. 35, 641–658 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Goyal, S., Vega-Redondo, F.: Network formation and social coordination. Games Econ. Behav. 50, 178–207 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Harsanyi, J., Selten, R.: A General Theory of Equilibrium Selection in Games. The MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  18. 18.
    Hojman, D., Szeidl, A.: Endogenous networks, social games, and evolution. Games Econ. Behav. 55, 112–130 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jackson, M.O., Watts, A.: On the formation of interaction networks in social coordination games. Games Econ. Behav. 41, 265–291 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jackson, M.O., Watts, A.: Social games: matching and the play of finitely repeated games. Games Econ. Behav. 70, 170–191 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kandori, M., Rob, R.: Evolution of equilibria in the long run: a general theory and applications. J. Econ. Theory 65, 383–414 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56 (1993)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Staudigl, M., Weidenholzer, S.: Constrained interactions and social coordination. J. Econ. Theory 152, 41–63 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Weidenholzer, S.: Coordination games and local interactions: a survey of the game theoretic literature. Games 1(4), 551–585 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Young, P.: The evolution of conventions. Econometrica 61, 57–84 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qingchao Zeng
    • 1
  1. 1.School of Economics and ManagementBeihang UniversityBeijingPeople’s Republic of China

Personalised recommendations