Advertisement

On the Properties of Velikhov-Chandrasekhar MRI in Ideal and Non-ideal Plasmas

  • Nikolay Shakura
  • Konstantin Postnov
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 454)

Abstract

In this chapter, conditions of the Velikhov-Chandrasekhar magneto-rotational instability (MRI) in ideal and non-ideal plasmas are examined. A linear WKB analysis of hydromagnetic axially symmetric flows shows that in the Rayleigh-unstable hydrodynamic case where the angular momentum decreases with radius, the MRI branch becomes stable, and the magnetic field suppresses the Rayleigh instability at small wavelengths. We investigate the limiting transition from hydromagnetic flows to hydrodynamic flows. The Rayleigh mode smoothly transits to the hydrodynamic case, while the Velikhov-Chandrasekhar MRI mode completely disappears without the magnetic field. The effects of viscosity and magnetic diffusivity in the plasma on the MRI conditions in thin accretion discs are studied. We find the limits on the mean free-path of ions allowing MRI to operate in such discs.

References

  1. Acheson DJ (1978) On the instability of toroidal magnetic fields and differential rotation in stars. R Soc Lond Philos Trans Ser A 289:459–500.  https://doi.org/10.1098/rsta.1978.0066 ADSMathSciNetCrossRefGoogle Scholar
  2. Balbus SA (2004) Viscous shear instability in weakly magnetized, dilute plasmas. Astrophys J 616:857–864. https://doi.org/10.1086/424989, astro-ph/0403678 ADSMathSciNetCrossRefGoogle Scholar
  3. Balbus SA (2012) On the behaviour of the magnetorotational instability when the Rayleigh criterion is violated. Mon Not R Astron Soc 423:L50–L54. https://doi.org/10.1111/j.1745-3933.2012.01255.x ADSCrossRefGoogle Scholar
  4. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. Astrophys J 376:214–233. https://doi.org/10.1086/170270 ADSCrossRefGoogle Scholar
  5. Balbus SA, Hawley JF (1998) Instability, turbulence, and enhanced transport in accretion disks. Rev Mod Phys 70:1–53.  https://doi.org/10.1103/RevModPhys.70.1 ADSCrossRefGoogle Scholar
  6. Balbus SA, Henri P (2008) On the magnetic Prandtl number behavior of accretion disks. Astrophys J 674:408–414. https://doi.org/10.1086/524838, 0706.0828 ADSCrossRefGoogle Scholar
  7. Chandrasekhar S (1960) The stability of non-dissipative Couette flow in hydromagnetics. Proc Natl Acad Sci 46:253–257.  https://doi.org/10.1073/pnas.46.2.253 ADSMathSciNetCrossRefGoogle Scholar
  8. Hawley JF, Gammie CF, Balbus SA (1995) Local three-dimensional magnetohydrodynamic simulations of accretion disks. Astrophys J 440:742. https://doi.org/10.1086/175311 ADSCrossRefGoogle Scholar
  9. Hawley JF, Richers SA, Guan X, Krolik JH (2013) Testing convergence for global accretion disks. Astrophys J 772:102. https://doi.org/10.1088/0004-637X/772/2/102, 1306.0243 ADSCrossRefGoogle Scholar
  10. Islam T, Balbus S (2005) Dynamics of the magnetoviscous instability. Astrophys J 633:328–333. https://doi.org/10.1086/447762, astro-ph/0504666 ADSCrossRefGoogle Scholar
  11. Ji H, Goodman J, Kageyama A (2001) Magnetorotational instability in a rotating liquid metal annulus. Mon Not R Astron Soc 325:L1–L5. https://doi.org/10.1046/j.1365-8711.2001.04647.x, astro-ph/0103226 ADSCrossRefGoogle Scholar
  12. Kato S, Fukue J, Mineshige S (eds) (1998) Black-hole accretion disks. Kyoto University Press, KyotoGoogle Scholar
  13. Ketsaris NA, Shakura NI (1998) On the calculation of the vertical structure of accretion discs. Astron Astrophys Trans 15:193. https://doi.org/10.1080/10556799808201769 ADSCrossRefGoogle Scholar
  14. Kirillov ON, Stefani F, Fukumoto Y (2014) Local instabilities in magnetized rotational flows: a short-wavelength approach. J Fluid Mech 760:591–633.  https://doi.org/10.1017/jfm.2014.614, 1401.8276 ADSMathSciNetCrossRefGoogle Scholar
  15. Kotko I, Lasota JP (2012) The viscosity parameter α and the properties of accretion disc outbursts in close binaries. Astron Astrophys 545:A115. https://doi.org/10.1051/0004-6361/201219618, 1209.0017 ADSCrossRefGoogle Scholar
  16. Kundu PK, Cohen IM, Dowling DR (2012) Fluid mechanics, 5th edn. Academic Press, Boston. http://dx.doi.org/10.1016/B978-0-12-382100-3.10032-0. http://www.sciencedirect.com/science/article/pii/B9780123821003100320
  17. Lord Rayleigh (1916) Proc R Soc A 93:143Google Scholar
  18. Masada Y, Sano T (2008) Axisymmetric magnetorotational instability in viscous accretion disks. Astrophys J 689:1234–1243. https://doi.org/10.1086/592601, 0808.2338 ADSCrossRefGoogle Scholar
  19. Nauman F, Blackman EG (2015) Sensitivity of the magnetorotational instability to the shear parameter in stratified simulations. Mon Not R Astron Soc 446:2102–2109.  https://doi.org/10.1093/mnras/stu2226, 1409.2442 ADSCrossRefGoogle Scholar
  20. Pessah ME, Chan Ck (2008) Viscous, resistive magnetorotational modes. Astrophys J 684:498–514. https://doi.org/10.1086/589915, 0801.4570 ADSCrossRefGoogle Scholar
  21. Ruediger G, Schultz M, Stefani F, Mond M (2014) Diffusive MHD instabilities: beyond the Chandrasekhar theorem. ArXiv e-prints 14070240 1407.0240 Google Scholar
  22. Sano T, Miyama SM (1999) Magnetorotational instability in protoplanetary disks. I. On the global stability of weakly ionized disks with ohmic dissipation. Astrophys J 515:776–786. https://doi.org/10.1086/307063 ADSCrossRefGoogle Scholar
  23. Shakura N, Postnov K (2015) A viscous instability in axially symmetric laminar shear flows. Mon Not R Astron Soc 448:3707–3717.  https://doi.org/10.1093/mnras/stv262, 1502.01888 ADSCrossRefGoogle Scholar
  24. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. Astron Astrophys 24:337–355ADSGoogle Scholar
  25. Shirakawa K, Hoshino M (2014) Asymmetric evolution of magnetic reconnection in collisionless accretion disk. Phys Plasmas 21(5):052903. https://doi.org/10.1063/1.4875739 ADSCrossRefGoogle Scholar
  26. Sorathia KA, Reynolds CS, Stone JM, Beckwith K (2012) Global simulations of accretion disks. I. Convergence and comparisons with local models. Astrophys J 749:189. https://doi.org/10.1088/0004-637X/749/2/189, 1106.4019 ADSCrossRefGoogle Scholar
  27. Spiegel EA, Veronis G (1960) On the Boussinesq approximation for a compressible fluid. Astrophys J 131:442. https://doi.org/10.1086/146849 ADSMathSciNetCrossRefGoogle Scholar
  28. Spitzer L (1962) Physics of fully ionized gases. Interscience, New YorkzbMATHGoogle Scholar
  29. Stone JM (2011) Recent results from simulations of the magnetorotational instability. In: Bonanno A, de Gouveia Dal Pino E, Kosovichev AG (eds) IAU symposium, vol 274, pp 422–428. https://doi.org/10.1017/S174392131100740X CrossRefGoogle Scholar
  30. Suleimanov VF, Lipunova GV, Shakura NI (2008) Modeling of non-stationary accretion disks in X-ray novae A 0620-00 and GRS 1124-68 during outburst. Astron Astrophys 491:267–277. https://doi.org/10.1051/0004-6361:200810155, 0805.1001 ADSCrossRefGoogle Scholar
  31. Suzuki TK, Inutsuka Si (2014) Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields. Astrophys J 784:121. https://doi.org/10.1088/0004-637X/784/2/121, 1309.6916 ADSCrossRefGoogle Scholar
  32. Velikhov EP (1959) Sov Phys. J Exp Theor Phys 36:1398MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nikolay Shakura
    • 1
    • 2
  • Konstantin Postnov
    • 1
    • 3
  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations