Advertisement

Nanocellulose: A New Multifunctional Tool for RNA Systems Biology Research

  • Elena Bencurova
  • Meik Kunz
  • Thomas Dandekar
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

Bioinformatics techniques allow the monitoring of large-scale interaction data such as gene expression changes. We explain suitable algorithms and databases for the analysis of direct regulatory interactions of RNA, such as micro (mi)RNA–mRNA, long non-coding (lnc)RNA, and RNA–protein complexes. Network analysis and dynamic simulations of RNA interaction networks are described next. RNA interactions probed by experiments are then described. For these interactions, nanocellulose provides a strong scaffolding platform; we evaluate different application modes regarding such uses of nanocellulose. Nanocellulose also provides options with which to probe biomedical RNA interactions. Future perspectives of nanocellulose use in various fields are discussed.

Keywords

Nanocellulose RNA Bioinformatics RNA-interaction networks Biomedicine Food industry Electronics 

References

  1. Abraham E, Deepa B, Pothan LA et al (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86:1468–1475CrossRefGoogle Scholar
  2. Abral H, Mahardika M (2016) Tensile properties of bacterial cellulose nanofibers-polyester composites. In: IOP conference series: materials science and engineering, vol 137, No 1. IOP Publishing, Bristol, p 012019 Google Scholar
  3. Agostini F, Zanzoni A, Klus P et al (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29:2928–2930PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahrem H, Pretzel D, Endres M et al (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353PubMedCrossRefGoogle Scholar
  5. Alkhatib Y, Dewaldt M, Moritz S et al (2017) Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur J Pharm Biopharm 112:164–176PubMedCrossRefGoogle Scholar
  6. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  7. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6PubMedCrossRefPubMedCentralGoogle Scholar
  8. Andrade FK, Costa R, Domingues L et al (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6:4034–4041PubMedCrossRefGoogle Scholar
  9. Baumschlager A, Aoki SK, Khammash M (2017) Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth Biol 6:2157–2167PubMedCrossRefGoogle Scholar
  10. Bengert P, Dandekar T (2004) Riboswitch finder – a tool for identification of riboswitch RNAs. Nucleic Acids Res 32(Web Server issue):W154–W159PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 11:1362–1365CrossRefGoogle Scholar
  12. Berndt S, Wesarg F, Wiegand C et al (2013) Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles. Cellulose 20:771–783CrossRefGoogle Scholar
  13. Bhattacharya K, Kilic G, Costa PM et al (2017) Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology 11:809–826PubMedGoogle Scholar
  14. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blazek M, Roth G, Zengerle R et al (2015) Microfluidic proximity ligation assay for profiling signaling networks with single-cell resolution. Methods Mol Biol 1346:169–184PubMedCrossRefGoogle Scholar
  16. Bodin A, Concaro S, Brittberg M et al (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1:406–408PubMedCrossRefGoogle Scholar
  17. Brinchi L, Cotana F, Fortunati E et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMedCrossRefGoogle Scholar
  18. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856PubMedPubMedCentralCrossRefGoogle Scholar
  19. Butchosa N, Brown C, Larsson PT et al (2013) Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chem 15:3404–3413CrossRefGoogle Scholar
  20. Campos D, Piccirillo C, Pullar RC et al (2014) Characterization and antimicrobial properties of food packaging methylcellulose films containing stem extract of Ginja cherry. J Sci Food Agric 94:2097–2103PubMedCrossRefGoogle Scholar
  21. Castiblanco F, Sundin GW (2016) Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189. Mol Plant Pathol 19:90–103PubMedCrossRefGoogle Scholar
  22. Cavka A, Guo X, Tang SJ et al (2013) Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnol Biofuels 6:25PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107CrossRefGoogle Scholar
  24. Chao YP, Ishida T, Sugano Y et al (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68:345–352PubMedCrossRefGoogle Scholar
  25. Chen YW, Lee HV, Juan JC et al (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219PubMedCrossRefGoogle Scholar
  26. Chen GQ, Wu GC, Alriksson B et al (2017) Bioconversion of waste fiber sludge to bacterial nanocellulose and use for reinforcement of CTMP paper sheets. Polymers 9:458CrossRefGoogle Scholar
  27. Coban EP, Biyik H (2011) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr J Biotechnol 10:5346–5354Google Scholar
  28. Corral ML, Cerrutti P, Vazquez A et al (2017) Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocoll 67:189–196CrossRefGoogle Scholar
  29. Costa AFS, Almeida FCG, Vinhas GM et al (2017) Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol 8:2027PubMedPubMedCentralCrossRefGoogle Scholar
  30. Croft D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39:D691–D697PubMedCrossRefGoogle Scholar
  31. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411CrossRefGoogle Scholar
  32. Czakai K, Dittrich M, Kaltdorf M et al (2017) Influence of platelet-rich plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus. Int J Med Microbiol 307:95–107PubMedCrossRefGoogle Scholar
  33. Dandekar T (2016) Modified bacterial nanocellulose and its uses in chip cards and medicine: Google Patents WO 2016174104 A1Google Scholar
  34. Di Cara A, Garg A, De Micheli G et al (2007) Dynamic simulation of regulatory networks using SQUAD. BMC Bioinformatics 8:1471–2105Google Scholar
  35. Dima S, Panaitescu D, Orban C et al (2017) Bacterial nanocellulose from side-streams of kombucha beverages production: preparation and physical-chemical properties. Polymers 9:374CrossRefGoogle Scholar
  36. Dodziuk H (2016) Applications of 3D printing in healthcare. Kardiochir Torakochirurgia Pol 13:283–293PubMedPubMedCentralGoogle Scholar
  37. Echeverry-Rendon M, Reece LM, Pastrana F et al (2017) Bacterial nanocellulose magnetically functionalized for neuro-endovascular treatment. Macromol Biosci 17:24CrossRefGoogle Scholar
  38. Einarson OJ, Sen D (2017) Self-biotinylation of DNA G-quadruplexes via intrinsic peroxidase activity. Nucleic Acids Res 45:9813–9822PubMedPubMedCentralCrossRefGoogle Scholar
  39. El Haga M, Feng Z, Su YY et al (2017) Contribution of the csgA and bcsA genes to Salmonella enterica serovar Pullorum biofilm formation and virulence. Avian Pathol 46:541–547CrossRefGoogle Scholar
  40. Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fiedler J, Breckwoldt K, Remmele CW et al (2015) Development of long noncoding RNA-based strategies to modulate tissue vascularization. J Am Coll Cardiol 66:2005–2015PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fujisaki Y, Koga H, Nakajima Y et al (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663CrossRefGoogle Scholar
  43. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213CrossRefGoogle Scholar
  44. Gea S, Reynolds CT, Roohpour N et al (2011) Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresour Technol 102:9105–9110PubMedCrossRefGoogle Scholar
  45. Gerbaldi C, Nair JR, Ahmad S et al (2010) UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources 195:1706–1713CrossRefGoogle Scholar
  46. Gottlich C, Muller LC, Kunz M et al (2016) A combined 3D tissue engineered in vitro/in silico lung tumor model for predicting drug effectiveness in specific mutational backgrounds. J Vis Exp 6:53885Google Scholar
  47. Grande CJ, Torres FG, Gomez CM et al (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Compos Sci Technol 16:181–185Google Scholar
  48. Grande CJ, Torres FG, Gomez CM et al (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615PubMedCrossRefGoogle Scholar
  49. Hatch AC, Fisher JS, Tovar AR et al (2011) 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11:3838–3845PubMedCrossRefGoogle Scholar
  50. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978PubMedCrossRefGoogle Scholar
  52. Jabbour L, Gerbaldi C, Chaussy D et al (2010) Microfibrillated cellulose-graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347CrossRefGoogle Scholar
  53. Jeon S, Yoo YM, Park JW et al (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14:1621–1624CrossRefGoogle Scholar
  54. Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40PubMedCrossRefGoogle Scholar
  55. Jonsson M, Brackmann C, Puchades M et al (2015) Neuronal networks on nanocellulose scaffolds. Tissue Eng Part C Methods 21:1162–1170PubMedCrossRefGoogle Scholar
  56. Jung YH, Chang TH, Zhang HL et al (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kanehisa M, Goto S, Furumichi M et al (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:D355–D360PubMedCrossRefGoogle Scholar
  58. Karl S, Dandekar T (2013) Jimena: efficient computing and system state identification for genetic regulatory networks. BMC Bioinformatics 14:1471–2105CrossRefGoogle Scholar
  59. Keiski CL, Harwich M, Jain S et al (2010) AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin. Structure 18:265–273PubMedPubMedCentralCrossRefGoogle Scholar
  60. Khalid A, Khan R, Ul-Islam M et al (2017) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221PubMedCrossRefGoogle Scholar
  61. Kong L, Zhang Y, Ye ZQ et al (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73PubMedCrossRefGoogle Scholar
  63. Krontiras P, Gatenholm P, Hagg DA (2015) Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J Biomed Mater Res B Appl Biomater 103:195–203PubMedCrossRefGoogle Scholar
  64. Kunz M, Xiao K, Liang C et al (2014) Bioinformatics of cardiovascular miRNA biology. J Mol Cell Cardiol 89:3–10PubMedCrossRefGoogle Scholar
  65. Kunz M, Wolf B, Schulze H et al (2016a) Non-coding RNAs in lung cancer: contribution of bioinformatics analysis to the development of non-invasive diagnostic tools. Genes (Basel) 8:pii: E8CrossRefGoogle Scholar
  66. Kunz M, Liang C, Nilla S et al (2016b) The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development. Database (Oxford) 2016. https://doi.org/10.1093/database/baw041
  67. Kunz M, Pittroff A, Dandekar T (2017) Systems biology analysis to understand regulatory miRNA networks in lung cancer. Methods Mol BiolGoogle Scholar
  68. Kutmon M, Riutta A, Nunes N et al (2016) WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 44:D488–D494PubMedCrossRefGoogle Scholar
  69. Lee KY, Buldum G, Mantalaris A et al (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32PubMedCrossRefGoogle Scholar
  70. Li W, Wang R, Liu SX (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted acid hydrolysis. Bioresources 6:4271–4281Google Scholar
  71. Li X, Song J, Yi C (2014) Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics Proteomics Bioinformatics 12:72–78PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li J, Lei P, Ding S et al (2016) An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosens Bioelectron 77:435–441PubMedCrossRefGoogle Scholar
  73. Liu J, Cheng F, Grenman H et al (2016) Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohydr Polym 148:259–271PubMedCrossRefGoogle Scholar
  74. Machadoa RTA, Gutierrez J, Tercjak A et al (2016) Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydr Polym 152:841–849CrossRefGoogle Scholar
  75. Maiwald T, Timmer J (2008) Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24:2037–2043PubMedPubMedCentralCrossRefGoogle Scholar
  76. Malinen MM, Kanninen L, Corlu A et al (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35:5110–5121PubMedCrossRefGoogle Scholar
  77. Mangayil R, Rajala S, Pammo A et al (2017) Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl Mater Interfaces 9:19048–19056PubMedCrossRefGoogle Scholar
  78. Marchetti L, Muzzio B, Cerrutti P et al (2017) Bacterial nanocellulose as novel additive in low-lipid low-sodium meat sausages. Effect on quality and stability. Food Struct 14:52–59CrossRefGoogle Scholar
  79. Matsuoka M, Tsuchida T, Matsushita K et al (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp sucrofermentans. Biosci Biotechnol Biochem 60:575–579CrossRefGoogle Scholar
  80. Mayer R, Ross P, Weinhouse H et al (1991) Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically cross-reacting proteins in higher-plants. Proc Natl Acad Sci U S A 88:5472–5476PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mencucci R, Boccalini C, Caputo R et al (2015) Effect of a hyaluronic acid and carboxymethylcellulose ophthalmic solution on ocular comfort and tear-film instability after cataract surgery. J Cataract Refract Surg 41:1699–1704PubMedCrossRefGoogle Scholar
  82. Messeguer X, Escudero R, Farre D et al (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18:333–334PubMedCrossRefGoogle Scholar
  83. Mi H, Poudel S, Muruganujan A et al (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–D342PubMedCrossRefGoogle Scholar
  84. Mikkelsen D, Flanagan BM, Dykes GA et al (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583PubMedCrossRefGoogle Scholar
  85. Molina-Ramirez C, Castro M, Osorio M et al (2017) Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10:pii: E639CrossRefGoogle Scholar
  86. Morais JPS, Rosa MD, de Souza MDM et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229–235PubMedCrossRefGoogle Scholar
  87. Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–192PubMedCrossRefGoogle Scholar
  88. Morgan JLW, McNamara JT, Zimmer J (2014) Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21:489–496PubMedPubMedCentralCrossRefGoogle Scholar
  89. Muller M, Ozturk E, Arlov O et al (2017) Alginate sulfate-nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45:210–223PubMedCrossRefGoogle Scholar
  90. Nimeskern L, Avila HM, Sundberg J et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21PubMedCrossRefGoogle Scholar
  91. Nogi M, Iwamoto S, Nakagaito AN et al (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  92. Nogi M, Karakawa M, Komoda N et al (2015) Transparent conductive nanofiber paper for foldable solar cells. Sci Rep 5:17254PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ndong Ntoutoume GM, Grassot V, Bregier F et al (2017) PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents–synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym 164:258–267PubMedCrossRefGoogle Scholar
  94. Omadjela O, Narahari A, Strumillo J et al (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci U S A 110:17856–17861PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ozturk E, Arlov O, Aksel S et al (2016) Sulfated hydrogel matrices direct mitogenicity and maintenance of chondrocyte phenotype through activation of FGF signaling. Adv Funct Mater 26:3649–3662PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pan-In P, Wongsomboon A, Kokpol C et al (2015) Depositing alpha-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 129:226–232PubMedCrossRefGoogle Scholar
  97. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25:2055–2059PubMedCrossRefGoogle Scholar
  98. Park J, Jung JH, Park K et al (2018) On-demand acoustic droplet splitting and steering in a disposable microfluidic chip. Lab Chip 18:422–432Google Scholar
  99. Philippi N, Walter D, Schlatter R et al (2009) Modeling system states in liver cells: survival, apoptosis and their modifications in response to viral infection. BMC Syst Biol 3:1752–0509CrossRefGoogle Scholar
  100. Piccirillo C, Demiray S, Ferreira ACS et al (2013) Chemical composition and antibacterial properties of stem and leaf extracts from Ginja cherry plant. Ind Crop Prod 43:562–569CrossRefGoogle Scholar
  101. Pretzel D, Linss S, Ahrem H et al (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rademacher A, Erdel F, Trojanowski J et al (2017) Real-time observation of light-controlled transcription in living cells. J Cell Sci 130:4213–4224PubMedCrossRefGoogle Scholar
  103. Ramana KV, Tomar A, Singh L (2000) Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16:245–248CrossRefGoogle Scholar
  104. Razaq A, Nystrom G, Stromme M et al (2011) High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers. PLoS One 6:15CrossRefGoogle Scholar
  105. Ring DF, Nashed W, Dow T (1986) Liquid loaded pad for medical applications, US Patent 4,588,400Google Scholar
  106. Saito R, Smoot ME, Ono K et al (2012) A travel guide to Cytoscape plugins. Nat Methods 9:1069–1076PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schlatter R, Philippi N, Wangorsch G et al (2012) Integration of Boolean models exemplified on hepatocyte signal transduction. Brief Bioinform 13:365–376PubMedCrossRefGoogle Scholar
  108. Scionti G (2010) Mechanical properties of bacterial cellulose implants. Chalmers University of Technology, GöteborgGoogle Scholar
  109. Si J, Cui Z, Wang Q et al (2016) Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(varepsilon-caprolactone)/nanocellulose fibers. Carbohydr Polym 143:270–278PubMedCrossRefGoogle Scholar
  110. Sirvio JA, Kolehmainen A, Visanko M et al (2014) Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. ACS Appl Mater Interfaces 6:14384–14390PubMedCrossRefGoogle Scholar
  111. Smirnov A, Schneider C, Hor J et al (2017) Discovery of new RNA classes and global RNA-binding proteins. Curr Opin Microbiol 39:152–160PubMedCrossRefGoogle Scholar
  112. Son HJ, Heo MS, Kim YG et al (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp A9 in shaking cultures. Biotechnol Appl Biochem 33:1–5PubMedCrossRefGoogle Scholar
  113. Song YY, Jiang YQ, Shi LY et al (2015) Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale 7:13694–13701PubMedCrossRefGoogle Scholar
  114. Steinle H, Behring A, Schlensak C et al (2017) Concise review: application of in vitro transcribed messenger RNA for cellular engineering and reprogramming: progress and challenges. Stem Cells 35:68–79PubMedCrossRefGoogle Scholar
  115. Stumpf F, Schoendube J, Gross A et al (2015) Single-cell PCR of genomic DNA enabled by automated single-cell printing for cell isolation. Biosens Bioelectron 69:301–306PubMedCrossRefGoogle Scholar
  116. Sunagawa N, Fujiwara T, Yoda T et al (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J Biosci Bioengineer 115:607–612CrossRefGoogle Scholar
  117. Sundaram J, Pant J, Goudie MJ et al (2016) Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose-chitosan packaging membranes. J Agric Food Chem 64:5260–5266PubMedCrossRefGoogle Scholar
  118. Svensson A, Nicklasson E, Harrah T et al (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431PubMedCrossRefGoogle Scholar
  119. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452PubMedCrossRefGoogle Scholar
  120. Thakar J, Albert R (2010) Boolean models of within-host immune interactions. Curr Opin Microbiol 13:377–381PubMedCrossRefGoogle Scholar
  121. Trovatti E, Freire CS, Pinto PC et al (2012) Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int J Pharm 435:83–87PubMedCrossRefGoogle Scholar
  122. Ummartyotin S, Juntaro J, Sain M et al (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crop Prod 35:92–97CrossRefGoogle Scholar
  123. Uth C, Zielonka S, Horner S et al (2014) A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. Angew Chem Int Ed Engl 53:12618–12623PubMedGoogle Scholar
  124. van de Ven TG, Sheikhi A (2016) Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale 8:15101–15114PubMedCrossRefGoogle Scholar
  125. Vazquez A, Foresti ML, Cerrutti P et al (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polymers Environ 21:545–554CrossRefGoogle Scholar
  126. Velasco-Bedran H, Lopez-Isunza F (2007) The unified metabolism of Gluconacetobacter entanii in continuous and batch processes. Process Biochem 42:1180–1190CrossRefGoogle Scholar
  127. Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA chast promotes cardiac remodeling. Sci Transl Med 8:326ra22PubMedCrossRefGoogle Scholar
  128. Vigneshwaran N, Satyamurthy P (2016) Nanocellulose production using cellulose degrading fungi. Springer, BaselGoogle Scholar
  129. Volders P-J, Helsens K, Wang X et al (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41:D246–D251PubMedCrossRefGoogle Scholar
  130. Wangorsch G, Butt E, Mark R et al (2011) Time-resolved in silico modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation. BMC Syst Biol 5:1752–0509CrossRefGoogle Scholar
  131. Wong HC, Fear AL, Calhoon RD et al (1990) Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A 87:8130–8134PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wu CN, Cheng KC (2017) Strong, thermal-stable, flexible, and transparent films by self-assembled TEMPO-oxidized bacterial cellulose nanofibers. Cellulose 24:269–283CrossRefGoogle Scholar
  133. Wu T, Wang J, Liu C et al (2006) NPInter: the noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res 34:D150–D152PubMedCrossRefGoogle Scholar
  134. Xiang ZY, Gao WH, Chen LH et al (2016) A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp. Cellulose 23:493–503CrossRefGoogle Scholar
  135. Xu CG, Carlsson DO, Mihranyan A (2016) Feasibility of of using DNA-immobilized nanocellulose-based immunoadsorbent for systemic lupus erythematosus plasmapheresis. Colloids Surf B Biointerfaces 143:1–6PubMedCrossRefGoogle Scholar
  136. Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155CrossRefGoogle Scholar
  137. Zeng XB, Liu J, Chen J et al (2011) Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J Ind Microbiol Biotechnol 38:1993–1999PubMedCrossRefGoogle Scholar
  138. Zhong Q, Bhattacharya S, Kotsopoulos S et al (2011) Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11:2167–2174PubMedCrossRefGoogle Scholar
  139. Zhou YH, Fuentes-Hernandez C, Khan TM et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhou YH, Khan TM, Liu JC et al (2014) Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org Electron 15:661–666CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Genomics and Systems Biology Group, Department of BioinformaticsBiocenter, University of WürzburgWürzburgGermany

Personalised recommendations