Advertisement

Biophysical Analysis of miRNA-Dependent Gene Regulation

  • Andrea Riba
  • Matteo Osella
  • Michele Caselle
  • Mihaela Zavolan
Chapter
Part of the RNA Technologies book series (RNATECHN)

Abstract

microRNAs (miRNAs) are short (∼22 nucleotides long) RNAs that are encoded in the genome of species ranging from viruses to man. Together with proteins of the Argonaute family, they form RNA-induced silencing complexes, which bind target mRNAs, reducing their stability and translation rate. A miRNA typically has hundreds of evolutionarily conserved binding sites across the transcriptome, and frequently, a given mRNA carries binding sites for multiple miRNAs. In this chapter we discuss behaviors that miRNA-containing regulatory networks can exhibit, with specific examples from various experimental systems.

Keywords

microRNA Ultrasensitivity Noise Competing endogenous RNA Binding hierarchy 

References

  1. Abrahante JE, Daul AL, Li M et al (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4:625–637PubMedCrossRefGoogle Scholar
  2. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4.  https://doi.org/10.7554/eLife.05005
  3. Arvey A, Larsson E, Sander C et al (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blevins R, Bruno L, Carroll T et al (2015) microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes. PLoS Genet 11:e1005020PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bosia C, Osella M, Baroudi ME et al (2012) Gene autoregulation via intronic microRNAs and its functions. BMC Syst Biol 6:131PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bosia C, Pagnani A, Zecchina R (2013) Modelling competing endogenous RNA networks. PLoS One 8:e66609PubMedPubMedCentralCrossRefGoogle Scholar
  8. Breda J, Rzepiela AJ, Gumienny R et al (2015) Quantifying the strength of miRNA-target interactions. Methods 85:90–99PubMedCrossRefGoogle Scholar
  9. Buchler NE, Louis M (2008) Molecular titration and ultrasensitivity in regulatory networks. J Mol Biol 384:1106–1119PubMedCrossRefGoogle Scholar
  10. Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cassidy JJ, Jha AR, Posadas DM et al (2013) miR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell 155:1556–1567PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cesana M, Cacchiarelli D, Legnini I et al (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chandradoss SD, Schirle NT, Szczepaniak M et al (2015) A dynamic search process underlies microRNA targeting. Cell 162:96–107PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chang S, Johnston RJ, Frøkjær-Jensen C et al (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430:785–789PubMedCrossRefGoogle Scholar
  15. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460:479–486PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cochella L, Hobert O (2012) Embryonic priming of a miRNA locus predetermines postmitotic neuronal left/right asymmetry in C. elegans. Cell 151:1229–1242PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cora’ D, Re A, Caselle M, Bussolino F (2017) MicroRNA-mediated regulatory circuits: outlook and perspectives. Phys Biol 14:045001PubMedCrossRefGoogle Scholar
  18. Denzler R, Agarwal V, Stefano J et al (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776PubMedPubMedCentralCrossRefGoogle Scholar
  19. Denzler R, McGeary SE, Title AC et al (2016) Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol Cell 64:565–579PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dill H, Linder B, Fehr A, Fischer U (2012) Intronic miR-26b controls neuronal differentiation by repressing its host transcript, ctdsp2. Genes Dev 26:25–30PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ecsedi M, Rausch M, Großhans H (2015) The let-7 microRNA directs vulval development through a single target. Dev Cell 32:335–344PubMedCrossRefGoogle Scholar
  22. Eichhorn SW, Guo H, McGeary SE et al (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115PubMedPubMedCentralCrossRefGoogle Scholar
  23. Figliuzzi M, Marinari E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213PubMedPubMedCentralCrossRefGoogle Scholar
  24. Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys Rev Lett 97:168302PubMedCrossRefGoogle Scholar
  25. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69PubMedPubMedCentralCrossRefGoogle Scholar
  26. Garcia DM, Baek D, Shin C et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146PubMedPubMedCentralCrossRefGoogle Scholar
  27. Grosswendt S, Filipchyk A, Manzano M et al (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54:1042–1054PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gruber AJ, Zavolan M (2013) Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenomics 5:671–683PubMedCrossRefGoogle Scholar
  29. Gumienny R, Zavolan M (2015) Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res 43:1380–1391PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions – beyond repression of gene expression. Nat Rev Genet 15:599–612PubMedCrossRefGoogle Scholar
  32. Hausser J, Landthaler M, Jaskiewicz L et al (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Res 19:2009–2020PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hausser J, Syed AP, Selevsek N et al (2013) Timescales and bottlenecks in miRNA-dependent gene regulation. Mol Syst Biol 9:711PubMedPubMedCentralCrossRefGoogle Scholar
  34. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665PubMedPubMedCentralCrossRefGoogle Scholar
  35. Heo I, Joo C, Cho J et al (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32:276–284PubMedCrossRefGoogle Scholar
  36. Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–S24PubMedCrossRefGoogle Scholar
  37. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, let-7 microRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ivey KN, Srivastava D (2010) MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 7:36–41PubMedCrossRefGoogle Scholar
  39. Jens M, Rajewsky N (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 16:113–126PubMedCrossRefGoogle Scholar
  40. Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647PubMedCrossRefGoogle Scholar
  41. Kasper DM, Moro A, Ristori E et al (2017) MicroRNAs establish uniform traits during the architecture of vertebrate embryos. Dev Cell 40:552–565.e5PubMedPubMedCentralCrossRefGoogle Scholar
  42. Khorshid M, Hausser J, Zavolan M, van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10:253–255PubMedCrossRefGoogle Scholar
  43. Krützfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438:685–689PubMedCrossRefGoogle Scholar
  44. Kumar RM, Cahan P, Shalek AK et al (2014) Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516:56–61PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lai EC (2002) Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364PubMedCrossRefGoogle Scholar
  46. Laneve P, Po A, Favia A et al (2017) The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget 8:31003–31015PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  48. Levine E, Zhang Z, Kuhlman T, Hwa T (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5:e229PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lewis BP, Shih I-H, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798PubMedCrossRefGoogle Scholar
  50. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20PubMedCrossRefGoogle Scholar
  51. Li Q-J, Chau J, Ebert PJR et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161PubMedCrossRefGoogle Scholar
  52. Li X, Cassidy JJ, Reinke CA et al (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137:273–282PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liang W-C, Fu W-M, Wong C-W et al (2015) The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 6:22513–22525PubMedPubMedCentralGoogle Scholar
  54. Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459PubMedCrossRefGoogle Scholar
  55. Martirosyan A, De Martino A, Pagnani A, Marinari E (2017) ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins. Sci Rep 7:43673PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mayr C, Hemann MT, Bartel DP (2007) Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315:1576–1579PubMedPubMedCentralCrossRefGoogle Scholar
  57. Megraw M, Sethupathy P, Gumireddy K et al (2010) Isoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21. Theor Chem Acc 125:593–598CrossRefGoogle Scholar
  58. Mukherji S, Ebert MS, Zheng GXY et al (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859PubMedPubMedCentralCrossRefGoogle Scholar
  59. Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102:349–362PubMedCrossRefGoogle Scholar
  60. Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101PubMedPubMedCentralCrossRefGoogle Scholar
  61. Osella M, Riba A, Testori A et al (2014) Interplay of microRNA and epigenetic regulation in the human regulatory network. Front Genet 5:345PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ozbudak EM, Thattai M, Kurtser I et al (2002) Regulation of noise in the expression of a single gene. Nat Genet 31:69–73PubMedCrossRefGoogle Scholar
  63. Poliseno L, Salmena L, Zhang J et al (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038PubMedPubMedCentralCrossRefGoogle Scholar
  64. Re A, Corá D, Taverna D, Caselle M (2009) Genome-wide survey of microRNA–transcription factor feed-forward regulatory circuits in human. Mol Biosyst 5:854–867PubMedPubMedCentralCrossRefGoogle Scholar
  65. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  66. Riba A, Bosia C, El Baroudi M et al (2014) A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes. PLoS Comput Biol 10:e1003490PubMedPubMedCentralCrossRefGoogle Scholar
  67. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346:608–613PubMedPubMedCentralCrossRefGoogle Scholar
  68. Schmiedel JM, Klemm SL, Zheng Y et al (2015) Gene expression. MicroRNA control of protein expression noise. Science 348:128–132PubMedCrossRefGoogle Scholar
  69. Shenoy A, Blelloch RH (2014) Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shkumatava A, Stark A, Sive H, Bartel DP (2009) Coherent but overlapping expression of microRNAs and their targets during vertebrate development. Genes Dev 23:466–481PubMedPubMedCentralCrossRefGoogle Scholar
  71. Taniguchi Y, Choi PJ, Li G-W et al (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–538PubMedPubMedCentralCrossRefGoogle Scholar
  72. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedCrossRefGoogle Scholar
  73. Van Kampen NG (1992) Stochastic processes in physics and chemistry. Elsevier, New YorkGoogle Scholar
  74. Vella MC, Choi E-Y, Lin S-Y et al (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3’UTR. Genes Dev 18:132–137PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wang Y, Sheng G, Juranek S et al (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–213PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wang Y, Xu Z, Jiang J et al (2013) Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80PubMedCrossRefGoogle Scholar
  77. Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151:1055–1067PubMedPubMedCentralCrossRefGoogle Scholar
  78. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedCrossRefGoogle Scholar
  79. Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136:26–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Génétique et Biologie Moléculaire et CellulaireIllkirchFrance
  2. 2.Dipartimento di FisicaTorinoItaly
  3. 3.Biozentrum, University of BaselBaselSwitzerland

Personalised recommendations