Advertisement

Genetic Improvement of Nitrogen Use Efficiency in Oilseed Rape

  • Andreas Stahl
  • Rod Snowdon
Chapter

Abstract

Oilseed rape ( Brassica napus L.) is the third most important oil crop worldwide after perennial oil palm and soybean. Increasing demand for high-quality rapeseed oil for human nutrition and biofuel, coupled with a high-value protein used as an animal feed, has resulted in significant production increases during the past four decades. In major cultivating areas throughout Canada, Northern Europe, China, and Australia, oilseed rape as the dominant dicotyledonous crop has assumed an integral role in cereal crop rotations, imparting an essential role in soil rejuvenation and in management of monocotyledonous cereal diseases and pests. As for all non-legume crops, nitrogen (N) is a most limiting macronutrient in oilseed rape production systems and has to be fertilized in high quantities for sufficient productivity. However, with its relatively high acquisition of nitrogen during vegetative growth stages, but a comparatively low nitrogen seed yield, oilseed rape cultivation releases noteworthy amounts of nitrogen after harvest. Thus, the crop is often associated with an N-balance surplus. This unused nitrogen can potentially cause environmental damage in other ecosystems, as NOx emissions or nitrate leaching. Furthermore, energy-dependent mineral fertilizer production by the Haber-Bosch process raises carbon dioxide emissions and lowers the greenhouse gas balance of crops dependent on high nitrogen inputs. In light of the fact that oilseed rape is the primary feedstock for European biodiesel production, legislation in the European Union demands reductions in greenhouse gas generation resulting from oilseed rape. As an overall consequence, increased nitrogen use efficiency (NUE) is a promising strategy to address these constraints and achieve more sustainable vegetable oil production in temperate agricultural regions. In this chapter, we traverse the recent history of winter-type oilseed rape breeding in the context of NUE, tracing a path from discovery of genetic diversity and interrelationships between relevant traits, toward further strategies for NUE improvement. We begin with a characterization of breeding progress over the past decades, including use of the potential advantages of hybrid varieties, and outline environmental and management interaction. Furthermore, we review current knowledge about relevant plant traits, including root traits, whose exploitation can potentially lead to enhanced nitrogen acquisition and nitrogen utilization efficiency. Particular attention is paid to genetic variation within available gene pools and its relevance in future breeding programs. Finally, we introduce contemporary techniques as suitable selection methods for crop scientists and (pre)breeders to accelerate breeding progress.

Keywords

Brassica napus Breeding progress Nitrogen acquisition Nitrogen utilization Genetic and genomic resources 

References

  1. Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ, Dupuy LX (2014) A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes. J Exp Bot 65(8):2039–2048.  https://doi.org/10.1093/jxb/eru048CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araya T, Kubo T, von Wiren N, Takahashi H (2016) Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana. J Integr Plant Biol 58(3):254–265.  https://doi.org/10.1111/jipb.12433CrossRefPubMedGoogle Scholar
  3. Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya YN et al (2014) CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc Natl Acad Sci USA 111(5):2029–2034.  https://doi.org/10.1073/pnas.1319953111CrossRefPubMedGoogle Scholar
  4. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al (2005) Cytokinin oxidase regulates rice grain production. Science (New York, N.Y.) 309(5735), 741–745.  https://doi.org/10.1126/science.1113373
  5. Bancroft I, Fraser F, Morgan C, Trick M (2015) Collinearity analysis of Brassica A and C genomes based on an updated inferred unigene order. Data Br 3:51–55.  https://doi.org/10.1016/j.dib.2015.01.004CrossRefGoogle Scholar
  6. Barraclough PB (1989) Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant Soil 119(1):59–70.  https://doi.org/10.1007/BF02370269CrossRefGoogle Scholar
  7. Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120(2):271–281.  https://doi.org/10.1007/s00122-009-1133-zCrossRefPubMedGoogle Scholar
  8. Becker HC (1987) Quantitative genetik und zuchtmethodik bei raps—versuch einer literaturübersicht. In: Bericht über die Arbeitstagung der Saatzuchtleiter in Gumpenstein Verlag der Bundesanstalt für alpenländische, Landwirtschaft, Gumpenstein, Austria, pp 67–82Google Scholar
  9. Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129(12):2323–2332.  https://doi.org/10.1007/s00122-016-2772-5CrossRefPubMedGoogle Scholar
  10. Berry PM, Spink J, Foulkes MJ, White PJ (2010) The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.). Field Crops Res 119(2–3):365–373.  https://doi.org/10.1016/j.fcr.2010.08.004CrossRefGoogle Scholar
  11. Bi Y-M, Wang R-L, Zhu T, Rothstein SJ (2007) Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 8:281.  https://doi.org/10.1186/1471-2164-8-281
  12. Boote KJ, Jones JW, White JW, Asseng S, Lizaso JI (2013) Putting mechanisms into crop production models. Plant, Cell Environ 36(9):1658–1672.  https://doi.org/10.1111/pce.12119CrossRefGoogle Scholar
  13. Bouchet A-S, Laperche A, Bissuel-Belaygue C, Snowdon R, Nesi N, Stahl A (2016) Nitrogen use efficiency in rapeseed. a review. Agron Sustain Dev 36(2).  https://doi.org/10.1007/s13593-016-0371-0
  14. Bouchet A-S, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H et al (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199(1–2):183–205.  https://doi.org/10.1007/s10681-014-1130-4
  15. Brugiere N, Humbert S, Rizzo N, Bohn J, Habben JE (2008) A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Mol Biol 67(3):215–229.  https://doi.org/10.1007/s11103-008-9312-x
  16. Brunel-Muguet S, Beauclair P, Bataillé M-P, Avice J-C, Trouverie J, Etienne P, Ourry A (2013) Light restriction delays leaf senescence in winter oilseed rape (Brassica napus L.). J Plant Growth Regul 32(3):506–518.  https://doi.org/10.1007/s00344-013-9317-9
  17. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant J Cell Mol Biol 42(4):567–585.  https://doi.org/10.1111/j.1365-313X.2005.02399.xCrossRefGoogle Scholar
  18. Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8):1413–1423.  https://doi.org/10.1007/s00122-011-1676-7CrossRefPubMedGoogle Scholar
  19. Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M et al (2014) Association mapping of six yield related traits in rapeseed (Brassica napus L.). Theor Appl Genet 127(1):85–96.  https://doi.org/10.1007/s00122-013-2203-9
  20. Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625.  https://doi.org/10.1038/srep21625
  21. Cardi T, Varshney R (2016) Cisgenesis and genome editing. Combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed 135(2):139–147.  https://doi.org/10.1111/pbr.12345
  22. Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. In: Rognli OA, Solberg E, Schjelderup I (Hg.): Breeding fodder crops for marginal conditions, Bd. 2. Springer, Netherlands, Dordrecht (Developments in plant breeding), p 101–127Google Scholar
  23. Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science (New York, N.Y.) 345(6199):950–953.  https://doi.org/10.1126/science.1253435
  24. Cheung F, Trick M, Drou N, Lim YP, Park YK, Kwon SJ et al (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21(7):1912–1928.  https://doi.org/10.1105/tpc.108.060376CrossRefPubMedPubMedCentralGoogle Scholar
  25. Christen O, Sieling K (1993) The effect of different preceding crops on the development, growth and yield of winter barley. J Agron Crop Sci 171(2):114–123.  https://doi.org/10.1111/j.1439-037X.1993.tb00120.xCrossRefGoogle Scholar
  26. Christen O, Sieling K, Hanus H (1992) The effect of different preceding crops on the development, growth and yield of winter wheat. Eur J Agron 1992(1):21–28CrossRefGoogle Scholar
  27. Chung KS, Lee JH, Lee JS, Ahn JH (2013) Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol Cells 35(6):519–525.  https://doi.org/10.1007/s10059-013-0030-0CrossRefPubMedPubMedCentralGoogle Scholar
  28. Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y et al (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129(10):1887–1899.  https://doi.org/10.1007/s00122-016-2746-7CrossRefPubMedPubMedCentralGoogle Scholar
  29. Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants. Emerging ‘matrix effects’. Curr Opin Plant Biol 4(3):247–253.  https://doi.org/10.1016/s1369-5266(00)00168-0
  30. Cowling WA, Buirchell BJ, Falk DE (2009) A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci. 60(10):1009.  https://doi.org/10.1071/cp08223
  31. Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Res 104(1–3):103–111.  https://doi.org/10.1016/j.fcr.2006.12.014CrossRefGoogle Scholar
  32. Cowling WA, Léon J (2013) Sustainable plant breeding. Plant Breed 132(1):1–9.  https://doi.org/10.1111/pbr.12026CrossRefGoogle Scholar
  33. Cramer N (1993) Umweltverträglichkeit der N-Versorgung des Rapses. Raps 1993(11):4–7Google Scholar
  34. Crossa J, de Los Campos G, Perez P, Gianola D, Burgueno J, Araus JL et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–724.  https://doi.org/10.1534/genetics.110.118521CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cullis BR, Smith AB, Beeck CP, Cowling WA (2010) Analysis of yield and oil from a series of canola breeding trials. Part II. Exploring variety by environment interaction using factor analysis. Genome 53(11):1002–1016.  https://doi.org/10.1139/G10-080CrossRefPubMedGoogle Scholar
  36. Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67(1):35–49.  https://doi.org/10.1016/S0378-4290(00)00082-4CrossRefGoogle Scholar
  37. de Dorlodot S, Forster B, Pages L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481.  https://doi.org/10.1016/j.tplants.2007.08.012CrossRefPubMedGoogle Scholar
  38. Dresbøll DB, Thorup-Kristensen K (2014) Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems? A simulation study of G × E×M interactions. Euphytica 199(1–2):97–117.  https://doi.org/10.1007/s10681-014-1199-9CrossRefGoogle Scholar
  39. Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126(1):1–11.  https://doi.org/10.1007/s00122-012-1964-xCrossRefPubMedGoogle Scholar
  40. Emery Neil RJ, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270(5244):1986–1988.  https://doi.org/10.1126/science.270.5244.1986CrossRefPubMedGoogle Scholar
  42. Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG (2012) Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development. Plant Cell Physiol 53(6):1003–1016.  https://doi.org/10.1093/pcp/pcs050CrossRefPubMedGoogle Scholar
  43. Ganal MW, Polley A, Graner E-M, Plieske J, Wieseke R, Luerssen H, Durstewitz G (2012) Large SNP arrays for genotyping in crop plants. J Biosci 37(5):821–828.  https://doi.org/10.1007/s12038-012-9225-3CrossRefPubMedGoogle Scholar
  44. Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell Environ 32(9):1272–1283.  https://doi.org/10.1111/j.1365-3040.2009.02011.xCrossRefGoogle Scholar
  45. Gehringer A, Snowdon R, Spiller T, Basunanda P, Friedt W (2007) New oilseed rape (Brassica napus) Hybrids with high levels of heterosis for seed yield under nutrient-poor conditions. Breed Sci 57(4):315–320.  https://doi.org/10.1270/jsbbs.57.315CrossRefGoogle Scholar
  46. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105(2):803–808.  https://doi.org/10.1073/pnas.0709559105CrossRefPubMedGoogle Scholar
  47. Girke A, Schierholt A, Becker HC (2012a) Extending the rapeseed gene pool with resynthesized Brassica napus II: Heterosis. Theor Appl Genet 124(6):1017–1026.  https://doi.org/10.1007/s00122-011-1765-7CrossRefPubMedGoogle Scholar
  48. Girke A, Schierholt A, Becker HC (2012b) Extending the rapeseed genepool with resynthesized Brassica napus L. I: genetic diversity. Genet Resour Crop Evol 59(7):1441–1447.  https://doi.org/10.1007/s10722-011-9772-8
  49. Girondé A, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F, Leport L et al (2015a) The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. BMC Plant Biol 15:59.  https://doi.org/10.1186/s12870-015-0437-1
  50. Girondé A, Poret M, Etienne P, Trouverie J, Bouchereau A, Le Cahérec F et al (2015b) A profiling approach of the natural variability of foliar N remobilization at the rosette stage gives clues to understand the limiting processes involved in the low N use efficiency of winter oilseed rape. J Exp Bot 66(9):2461–2473.  https://doi.org/10.1093/jxb/erv031CrossRefPubMedGoogle Scholar
  51. Golicz AA, Batley J, Edwards D (2016a) Towards plant pangenomics. Plant Biotechnol J 14(4):1099–1105.  https://doi.org/10.1111/pbi.12499CrossRefPubMedGoogle Scholar
  52. Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA et al (2016b) The pangenome of an agronomically important crop plant Brassica oleracea. Nature Commun 7:13390.  https://doi.org/10.1038/ncomms13390
  53. Gombert J, Etienne P, Ourry A, Le Dily F (2006) The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. J Exp Bot 57(9):1949–1956.  https://doi.org/10.1093/jxb/erj142
  54. Gombert J, Le Dily F, Lothier J, Etienne P, Rossato L, Allirand JM et al (2010) Effect of nitrogen fertilization on nitrogen dynamics in oilseed rape using 15 N-labeling field experiment. Z. Pflanzenernähr Bodenk 173(6):875–884.  https://doi.org/10.1002/jpln.200800270CrossRefGoogle Scholar
  55. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605.  https://doi.org/10.1016/j.tplants.2004.10.008CrossRefPubMedGoogle Scholar
  56. Grami B, Stefansson BR (1977) Gene action for protein and oil content in summer rape. Can J Plant Sci 57(3):625–631.  https://doi.org/10.4141/cjps77-092CrossRefGoogle Scholar
  57. Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622.  https://doi.org/10.1007/s11103-013-0013-8CrossRefPubMedGoogle Scholar
  58. Griggs D, Stafford SM, Rockström J, Öhman MC, Gaffney O, Glaser G et al (2014) An integrated framework for sustainable development goals. In: E&S vol 19, no 4.  https://doi.org/10.5751/es-07082-190449
  59. Guo Y, Gan S-S (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65(14):3901–3913.  https://doi.org/10.1093/jxb/eru248CrossRefPubMedGoogle Scholar
  60. Fischer RA, Byerlee D, Edmeades GO (2014) Crop yields and global food security: will yield increase continue to feed the world? ACIAR Monograph no. 158. Australian Centre for International Agricultural Research, Canberra, xxii, 634 ppGoogle Scholar
  61. Fletcher RS, Mullen JL, Heiliger A, McKay JK (2014) QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot 66(1):245–256.  https://doi.org/10.1093/jxb/eru423CrossRefPubMedPubMedCentralGoogle Scholar
  62. Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular-mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93(7):1017–1025.  https://doi.org/10.1007/BF00230119CrossRefPubMedGoogle Scholar
  63. Foisset N, Delourme R, Barret P, Renard M (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91(5):756–761.  https://doi.org/10.1007/BF00220955CrossRefPubMedGoogle Scholar
  64. Funk H, Mohr R (2010) Die Rapsabrechnung. UFOP-Praxisinformation, Union zur Förderung von Oelund Proteinpflanzen e.V. Berlin. http://www.ufop.de
  65. Han Y, Yang H, Jiao Y (2014): Regulation of inflorescence architecture by cytokinins. Frontiers Plant Sci 5:669.  https://doi.org/10.3389/fpls.2014.00669
  66. Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53(4):793–802.  https://doi.org/10.1007/s10722-004-5541-2CrossRefGoogle Scholar
  67. Hatzig S, Zaharia LI, Abrams S, Hohmann S, Legoahec L, Bouchereau A et al (2014) Early osmotic adjustment responses in drought-resistant and drought-sensitive oilseed rape. J Integr Plant Biol 56(8):797–809.  https://doi.org/10.1111/jipb.12199CrossRefPubMedGoogle Scholar
  68. Hatzig SV, Frisch M, Breuer F, Nesi N, Ducournau S, Wagner M-H et al (2015) Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Frontiers Plant Sci 6:221.  https://doi.org/10.3389/fpls.2015.00221
  69. Heffner EL, Jannink J-L, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. The Plant Genome 4(1):65–75Google Scholar
  70. Heffner EL, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection. Gain per unit time and cost. Crop Sci 50(5):1681.  https://doi.org/10.2135/cropsci2009.11.0662
  71. Henke J; Breustedt G, Sieling K, Kage H (2007) Impact of uncertainty on the optimum nitrogen fertilization rate and agronomic, ecological and economic factors in an oilseed rape based crop rotation. The J Agric Sci 145(05):455.  https://doi.org/10.1017/s0021859607007204
  72. Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9):2369–2387.  https://doi.org/10.1093/jxb/erm097CrossRefPubMedGoogle Scholar
  73. Hohmann M, Stahl A, Rudloff J, Wittkop B, Snowdon RJ (2016) Not a load of rubbish: simulated field trials in large-scale containers. Plant, Cell Environ 39(9):2064–2073.  https://doi.org/10.1111/pce.12737CrossRefGoogle Scholar
  74. Hua S, Chen Z-H, Zhang Y, Yu H, Lin B, Zhang D (2014) Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. Bot Stud 55(1):34.  https://doi.org/10.1186/1999-3110-55-34
  75. Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Ann Rev Plant Biol 63:353–380.  https://doi.org/10.1146/annurev-arplant-042811-105503CrossRefGoogle Scholar
  76. Jameson PE, Song J (2016) Cytokinin: a key driver of seed yield. J Exp Bot 67(3):593–606.  https://doi.org/10.1093/jxb/erv461CrossRefPubMedGoogle Scholar
  77. Jan HU, Abbadi A, Lucke S, Nichols RA, Snowdon RJ (2016) Genomic prediction of testcross performance in canola (Brassica napus). PLoS One 11(1):e0147769.  https://doi.org/10.1371/journal.pone.0147769CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jonas E, de Koning J-D (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31(9):497–504.  https://doi.org/10.1016/j.tibtech.2013.06.003CrossRefPubMedGoogle Scholar
  79. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14(10):563–573.  https://doi.org/10.1016/j.tplants.2009.07.005CrossRefPubMedGoogle Scholar
  80. Junior J, Abrahão E, Mertz LM, Henning FA, Quilón IR, Maia MDS, Altisent JMD (2012) Changes in canola plant architecture and seed physiological quality in response to different sowing densities. Rev Bras de Sem 34(2012):14–20CrossRefGoogle Scholar
  81. Kamh M, Wiesler F, Ulas A, Horst WJ (2005) Root growth and N-uptake activity of oilseed rape (Brassica napus L.) cultivars differing in nitrogen efficiency. J Plant Nutr Soil Sci 168(1):130–137.  https://doi.org/10.1002/jpln.200421453
  82. Kant S, Burch D, Badenhorst P, Palanisamy R, Mason J, Spangenberg G (2015) Regulated expression of a cytokinin biosynthesis gene IPT delays leaf senescence and improves yield under rainfed and irrigated conditions in canola (Brassica napus L.). PloS One 10(1):e0116349.  https://doi.org/10.1371/journal.pone.0116349
  83. Kessel B (2000) Genetische Variation und Vererbung der Stickstoff—Effizienz bei Winterraps (Brassica napus L.) (In German). PhD dissertation, Universität Göttingen Göttingen, GermanyGoogle Scholar
  84. Kessel B, Schierholt A, Becker HC (2012) Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (L.). Crop Sci 52(6):2546.  https://doi.org/10.2135/cropsci2012.02.0134
  85. Kiba T, Krapp A (2016) Plant Nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57(4):707–714.  https://doi.org/10.1093/pcp/pcw052CrossRefPubMedPubMedCentralGoogle Scholar
  86. Kirkegaard JA, Lilley JM, Morrison MJ (2016) Drivers of trends in Australian canola productivity and future prospects. Crop Pasture Sci 67(4):i.  https://doi.org/10.1071/cpv67n4_fo
  87. Koeslin-Findeklee F, Meyer A, Girke A, Beckmann K, Horst WJ (2014) The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. Plant Soil 384(1–2):347–362.  https://doi.org/10.1007/s11104-014-2212-8
  88. Koeslin-Findeklee F, Rizi VS, Becker MA, Parra-Londono S, Arif M, Balazadeh S et al (2015) Transcriptomic analysis of nitrogen starvation—and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Plant Sci Int J Exp Plant Biol 233:174–185.  https://doi.org/10.1016/j.plantsci.2014.11.018CrossRefGoogle Scholar
  89. Körber N, Bus A, Li J, Parkin IAP, Wittkop B, Snowdon RJ, Stich B (2016) Agronomic and seed quality traits dissected by genome-wide association mapping in Brassica napus. Front Plant Sci 7:386.  https://doi.org/10.3389/fpls.2016.00386
  90. Koscielny CB, Gulden RH (2012) Seedling root length in Brassica napus L. is indicative of seed yield. Can J Plant Sci 92(7):1229–1237.  https://doi.org/10.4141/cjps2012-070CrossRefGoogle Scholar
  91. Le Deunff E, Malagoli P (2014) An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx. Ann Bot 113(6):991–1005.  https://doi.org/10.1093/aob/mcu021
  92. Lee B-R, Jin Y-L, Park S-H, Zaman R, Zhang Q, Avice J-C et al (2015) Genotypic variation in N uptake and assimilation estimated by 15 N tracing in water deficit-stressed Brassica napus. Environ Exp Bot 109:73–79.  https://doi.org/10.1016/j.envexpbot.2014.08.004CrossRefGoogle Scholar
  93. Liu J, Wang W, Mei D, Wang H, Fu L, Liu D et al (2016) Characterizing variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci 7:21.  https://doi.org/10.3389/fpls.2016.00021
  94. Lotze-Campen H, von Witzke H, Noleppa S, Schwarz G (2015) Science for food, climate protection and welfare. An economic analysis of plant breeding research in Germany. Agric Syst 136:79–84.  https://doi.org/10.1016/j.agsy.2015.02.005CrossRefGoogle Scholar
  95. Luo YX, Luo CY, Du DZ, Fu Z, Yao YM, Xu CC, Zhang HS (2014) Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 200(3):321–335.  https://doi.org/10.1007/s10681-014-1140-2CrossRefGoogle Scholar
  96. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15(4):516–525.  https://doi.org/10.1101/gr.3531105CrossRefPubMedPubMedCentralGoogle Scholar
  97. Malagoli P, Laine P, Rossato L, Ourry A (2005) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. Ann Bot 95(5):853–861.  https://doi.org/10.1093/aob/mci091CrossRefPubMedPubMedCentralGoogle Scholar
  98. Malagoli P, Le Deunff E (2014) An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs. Ann Bot 113(6):1007–1019.  https://doi.org/10.1093/aob/mcu022
  99. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6(6):2008–2011.  https://doi.org/10.1093/mp/sst121CrossRefPubMedPubMedCentralGoogle Scholar
  100. Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M (2008) Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol 10:23–36.  https://doi.org/10.1111/j.1438-8677.2008.00097.xCrossRefPubMedGoogle Scholar
  101. Mason AS, Snowdon RJ (2016) Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. Plant Biol (Stuttgart, Germany) 18(6):883–892.  https://doi.org/10.1111/plb.12462
  102. Mason AS, Batley J (2015) Creating new interspecific hybrid and polyploid crops. Trends Biotechnol 33(8):436–441.  https://doi.org/10.1016/j.tibtech.2015.06.004CrossRefPubMedGoogle Scholar
  103. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40(12):1489–1492.  https://doi.org/10.1038/ng.253CrossRefPubMedGoogle Scholar
  104. Miersch S, Gertz A, Breuer F, Schierholt A, Becker HC (2016a) Influence of the semi-dwarf growth type on nitrogen use efficiency in winter oilseed rape. Crop Sci 56(6):2952–2961.  https://doi.org/10.2135/cropsci2016.01.0044CrossRefGoogle Scholar
  105. Miersch S, Gertz A, Breuer F, Schierholt A, Becker HC (2016b) Influence of the semi-dwarf growth type on seed yield and agronomic parameters at low and high nitrogen fertilization in winter oilseed rape. Crop Sci 56(4):1573–1585.  https://doi.org/10.2135/cropsci2015.09.0554CrossRefGoogle Scholar
  106. Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron J 74(3):562.  https://doi.org/10.2134/agronj1982.00021962007400030037x
  107. Morrison MJ, Harker KN, Blackshaw RE, Holzapfel CJ, O’Donovan JT (2016) Canola yield improvement on the Canadian Prairies from 2000 to 2013. Crop Pasture Sci 67(4):245.  https://doi.org/10.1071/cp15348
  108. Müller K, Böttcher U, Meyer-Schatz F, Kage H (2008) Analysis of vegetation indices derived from hyperspectral reflection measurements for estimating crop canopy parameters of oilseed rape (Brassica napus L.). Biosyst Eng 101(2):172–182.  https://doi.org/10.1016/j.biosystemseng.2008.07.004
  109. Nelson MN, Lilley JM, Helliwell C, Taylor CM, Siddique KHM, Chen S et al (2016) Can genomics assist the phenological adaptation of canola to new and changing environments? Crop Pasture Sci 67(4):284.  https://doi.org/10.1071/cp15320
  110. Nyikako J, Schierholt A, Kessel B, Becker HC (2014) Genetic variation in nitrogen uptake and utilization efficiency in a segregating DH population of winter oilseed rape. Euphytica 199:3–11.  https://doi.org/10.1007/s10681-014-1201-6CrossRefGoogle Scholar
  111. Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy A-S et al (2014) Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. J Exp Bot 65(14):3927–3947.  https://doi.org/10.1093/jxb/eru041
  112. Pahlmann I, Böttcher U, Kage H (2017) Developing and testing an algorithm for site-specific N fertilization of winter oilseed rape. Comput Electron Agric 136:228–237.  https://doi.org/10.1016/j.compag.2016.12.005CrossRefGoogle Scholar
  113. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171(2):765–781.  https://doi.org/10.1534/genetics.105.042093CrossRefPubMedPubMedCentralGoogle Scholar
  114. Parkin Isobel A P, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15(6):R77.  https://doi.org/10.1186/gb-2014-15-6-r77CrossRefPubMedPubMedCentralGoogle Scholar
  115. Passioura JB (1983) Roots and drought resistance. Agric Water Manag 7(1–3):265–280.  https://doi.org/10.1016/0378-3774(83)90089-6CrossRefGoogle Scholar
  116. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnol J 9(7):747–758.  https://doi.org/10.1111/j.1467-7652.2010.00584.xCrossRefPubMedGoogle Scholar
  117. Poorter H, Fiorani F, Pieruschka R, Wojciechowski T, van der Putten WH, Kleyer M et al (2016) Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. The New Phytol 212(4):838–855.  https://doi.org/10.1111/nph.14243CrossRefPubMedGoogle Scholar
  118. Potter T, Burton W, Edwards J, Wratten N, Mailer R, Salisbury P, Pearce A (2016) Assessing progress in breeding to improve grain yield, quality and blackleg (Leptosphaeria maculans) resistance in selected Australian canola cultivars (1978? 2012). Crop Pasture Sci 67(4):308–316.  https://doi.org/10.1071/CP15290CrossRefGoogle Scholar
  119. Qian L, Qian W, Snowdon RJ (2014) Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics 15:1170.  https://doi.org/10.1186/1471-2164-15-1170
  120. Qian L, Qian W, Snowdon RJ (2016a) Haplotype hitchhiking promotes trait coselection in Brassica napus. Plant Biotechnol J 14(7):1578–1588.  https://doi.org/10.1111/pbi.12521CrossRefPubMedPubMedCentralGoogle Scholar
  121. Qian L, Voss-Fels K, Cui Y, Jan HU, Samans B, Obermeier C et al (2016b) Deletion of a stay-green gene associates with adaptive selection in Brassica napus. Mol Plant 9(12):1559–1569.  https://doi.org/10.1016/j.molp.2016.10.017CrossRefPubMedGoogle Scholar
  122. Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113(3):549–561.  https://doi.org/10.1007/s00122-006-0323-1
  123. Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179(3):1547–1558.  https://doi.org/10.1534/genetics.108.089680
  124. Rahman M, McClean P (2013) Genetic analysis on flowering time and root system in L. Crop Sci 53(1):141–147.  https://doi.org/10.2135/cropsci2012.02.0095CrossRefGoogle Scholar
  125. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N et al (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9(7):e101673.  https://doi.org/10.1371/journal.pone.0101673CrossRefPubMedPubMedCentralGoogle Scholar
  126. Raman R, Diffey S, Carling J, Cowley RB, Kilian A, Luckett DJ, Raman H (2016) Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population. Crop Pasture Sci 67(4):298.  https://doi.org/10.1071/cp15283
  127. Rathke G-W, Christen O, Diepenbrock W (2005) Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Res 94(2–3):103–113.  https://doi.org/10.1016/j.fcr.2004.11.010CrossRefGoogle Scholar
  128. Rockström J, Steffen W, Noone K, Persson A, Chapin III FS, Lambin EF et al (2009) A safe operating space for humanity. Nature 461(7263):472–475.  https://doi.org/10.1038/461472aCrossRefPubMedGoogle Scholar
  129. Rossato L, Lainé P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52(361):1655–1663.  https://doi.org/10.1093/jexbot/52.361.1655CrossRefPubMedGoogle Scholar
  130. Sattelmacher B, Horst WJ, Becker HC (1994) Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z Pflanzenernaehr Bodenk 157(3):215–224.  https://doi.org/10.1002/jpln.19941570309CrossRefGoogle Scholar
  131. Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21:7–15.  https://doi.org/10.1016/j.pbi.2014.05.015CrossRefPubMedGoogle Scholar
  132. Schiessl S, Iniguez-Luy F, Qian W, Snowdon RJ (2015) Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics 16:737.  https://doi.org/10.1186/s12864-015-1950-1
  133. Schiessl S, Samans B, Huttel B, Reinhard R, Snowdon RJ (2014) Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Frontiers Plant Sci 5:404.  https://doi.org/10.3389/fpls.2014.00404
  134. Schmutzer T, Samans B, Dyrszka E, Ulpinnis C, Weise S, Stengel D et al (2015) Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus. Sci Data 2:150072.  https://doi.org/10.1038/sdata.2015.72
  135. Schulte auf‘m Erley G, Behrens T, Ulas A, Wiesler F, Horst W (2011) Agronomic traits contributing to nitrogen efficiency of winter oilseed rape cultivars. Field Crops Res 124(1):114–123.  https://doi.org/10.1016/j.fcr.2011.06.009CrossRefGoogle Scholar
  136. Schulte auf’m Erley EG, Wijaya K-A, Ulas A, Becker H, Wiesler F, Horst WJ (2007) Leaf senescence and N uptake parameters as selection traits for nitrogen efficiency of oilseed rape cultivars. Physiol Plant 130(4):519–531.  https://doi.org/10.1111/j.1399-3054.2007.00921.xCrossRefGoogle Scholar
  137. Shi L, Shi T, Broadley MR, White PJ, Long Y, Meng J et al (2013) High-throughput root phenotyping screens identify genetic loci associated with root architectural traits in Brassica napus under contrasting phosphate availabilities. Ann Bot 112(2):381–389.  https://doi.org/10.1093/aob/mcs245CrossRefPubMedGoogle Scholar
  138. Sieling K, Kage H (2008) The potential of semi-dwarf oilseed rape genotypes to reduce the risk of N leaching. The J Agric Sci 146(01).  https://doi.org/10.1017/s0021859607007472
  139. Sieling K, Kage H (2010) Efficient N management using winter oilseed rape. A review. Agron Sustain Dev 30(2):271–279.  https://doi.org/10.1051/agro/2009036CrossRefGoogle Scholar
  140. Singh S, Letham DS, Jameson PE, Zhang R, Parker CW, Badenoch-Jones J, Noodén LD (1988) (1988): Cytokinin biochemistry in relation to leaf senescence. IV. Cytokinin metabolism in soybean explants. Plant Physiol 88:788–794CrossRefPubMedPubMedCentralGoogle Scholar
  141. Snowdon RJ, Luy I, Federico L (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131(3):351–360.  https://doi.org/10.1111/j.1439-0523.2012.01976.xCrossRefGoogle Scholar
  142. Song J, Jiang L, Jameson PE (2015) Expression patterns of Brassica napus genes implicate IPT, CKX, sucrose transporter, cell wall invertase, and amino acid permease gene family members in leaf, flower, silique, and seed development. J Exp Bot 66(16):5067–5082.  https://doi.org/10.1093/jxb/erv133CrossRefPubMedPubMedCentralGoogle Scholar
  143. Stahl A (2016) Detailed phenotypic assessment of genetic variation for nitrogen uptake and utilisation efficiency traits in a diverse panel of Brassica napus L. PhD dissertation, Universität Giessen, Giessen, GermanyGoogle Scholar
  144. Stahl A, Friedt W, Wittkop B, Snowdon RJ (2016) Complementary diversity for nitrogen uptake and utilisation efficiency reveals broad potential for increased sustainability of oilseed rape production. Plant Soil 400(1–2):245–262.  https://doi.org/10.1007/s11104-015-2726-8CrossRefGoogle Scholar
  145. Stahl A, Pfeifer M, Frisch M, Wittkop B, Snowdon RJ (2017) Recent genetic gains in nitrogen use efficiency in oilseed rape. Front. Plant Sci. 8:963.  https://doi.org/10.3389/fpls.2017.00963CrossRefPubMedPubMedCentralGoogle Scholar
  146. Svečnjak Z, Rengel Z (2006) Nitrogen utilization efficiency in canola cultivars at grain harvest. Plant Soil 283(1–2):299–307.  https://doi.org/10.1007/s11104-006-0020-5CrossRefGoogle Scholar
  147. Technow F, Messina CD, Totir LR, Cooper M (2015) Integrating crop growth models with whole genome prediction through approximate Bayesian computation. PLoS ONE 10(6):e0130855.  https://doi.org/10.1371/journal.pone.0130855CrossRefPubMedPubMedCentralGoogle Scholar
  148. Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M et al (2016) High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). Ann Bot 655–665.  https://doi.org/10.1093/aob/mcw046
  149. Thorup-Kristensen K (2006) Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil 288(1–2):233–248.  https://doi.org/10.1007/s11104-006-9110-7CrossRefGoogle Scholar
  150. Thorup-Kristensen K, Kirkegaard J (2016) Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann Bot 573–592.  https://doi.org/10.1093/aob/mcw122
  151. Thurling N (1991) Application of the ideotype concept in breeding for higher yield in the oilseed brassicas. Field Crops Res 26(2):201–219.  https://doi.org/10.1016/0378-4290(91)90036-UCrossRefGoogle Scholar
  152. Tilsner J, Kassner N, Struck C, Lohaus G (2005) Amino acid contents and transport in oilseed rape (Brassica napus L.) under different nitrogen conditions. Planta 221(3):328–338.  https://doi.org/10.1007/s00425-004-1446-8
  153. Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113(4):597–609.  https://doi.org/10.1007/s00122-006-0324-0
  154. Ulas A, Schulte auf’m Erley G, Kamh M, Wiesler F, Horst WJ (2012) Root-growth characteristics contributing to genotypic variation in nitrogen efficiency of oilseed rape. Z Pflanzenernähr Bodenk 175(3):489–498.  https://doi.org/10.1002/jpln.201100301CrossRefGoogle Scholar
  155. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge U-I, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792.  https://doi.org/10.1104/pp.106.079293CrossRefPubMedPubMedCentralGoogle Scholar
  156. Vidal EA, Tamayo KP, Gutierrez RA (2010) Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. Wiley Interdiscip Rev Syst Biol Med 2(6):683–693.  https://doi.org/10.1002/wsbm.87
  157. Voss-Fels K, Snowdon RJ (2015) Understanding and utilizing crop genome diversity via high-resolution genotyping. Plant Biotechnol J 1086–1094.  https://doi.org/10.1111/pbi.12456
  158. Wang G, Ding G, Li L, Cai H, Ye X, Zou J, Xu F (2014) Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus. Ann Bot 114(3):549–559.  https://doi.org/10.1093/aob/mcu135CrossRefPubMedPubMedCentralGoogle Scholar
  159. Wang L, Mühling K-H, Schulte auf’m Erley G (2016) Nitrogen efficiency and leaf nitrogen remobilisation of oilseed rape lines and hybrids. Ann Appl Biol 169(1):125–133.  https://doi.org/10.1111/aab.12286CrossRefGoogle Scholar
  160. Wang ML, Zhao Y, Chen F, Yin XC (2004) Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breed 123(5):449–453.  https://doi.org/10.1111/j.1439-0523.2004.01014.xCrossRefGoogle Scholar
  161. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039.  https://doi.org/10.1038/ng.919CrossRefPubMedPubMedCentralGoogle Scholar
  162. White PJ, George TS, Dupuy LX, Karley AJ, Valentine TA, Wiesel L, Wishart J (2013): Root traits for infertile soils. Front Plant Sci 4:193.  https://doi.org/10.3389/fpls.2013.00193
  163. Wiesler F, Behrens T, Horst WJ (2001) The role of nitrogen-efficient cultivars in sustainable agriculture, In: Optimizing nitrogen management in food and energy production and environmental protection. In: Proceedings of the 2nd international nitrogen conference on science and policy. The Scientific World, vol 1Google Scholar
  164. Wu X-L, Liu Z-H, Hu Z-H, Huang R-Z (2014) BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol 56(6):582–593.  https://doi.org/10.1111/jipb.12158CrossRefPubMedGoogle Scholar
  165. Wurschüm T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125(2):201–210.  https://doi.org/10.1007/s00122-012-1887-6CrossRefPubMedGoogle Scholar
  166. Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W et al (2016) Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res Int J Rapid Pub Rep Genes Genomes 23(1):43–52.  https://doi.org/10.1093/dnares/dsv035
  167. Yu J, Zhao M, Wang X, Tong C, Huang S, Tehrim S et al (2013) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14:664.  https://doi.org/10.1186/1471-2164-14-664
  168. Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279(5349):407–409.  https://doi.org/10.1126/science.279.5349.407CrossRefPubMedGoogle Scholar
  169. Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51(342):51–59.  https://doi.org/10.1093/jexbot/51.342.51CrossRefPubMedGoogle Scholar
  170. Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113(1):33–38.  https://doi.org/10.1007/s00122-006-0267-5CrossRefPubMedGoogle Scholar
  171. Zhao J, Bai W, Zeng Q, Song S, Zhang M, Li X et al (2015) Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Mol Breed New Strateg Plant Improv 35:60.  https://doi.org/10.1007/s11032-015-0232-6
  172. Zhu X-G, Lynch JP, LeBauer DS, Millar AJ, Stitt M, Long SP (2016) Plants in silico: why, why now and what?–an integrative platform for plant systems biology research. Plant, Cell Environ 39(5):1049–1057.  https://doi.org/10.1111/pce.12673CrossRefGoogle Scholar
  173. Zou J, Zhu J, Huang S, Tian E, Xiao Y, Fu D et al (2010) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120(2):283–290.  https://doi.org/10.1007/s00122-009-1201-4CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig UniversityGiessenGermany

Personalised recommendations