Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization

  • Shahid Ali Khan
  • Sher Bahadar KhanEmail author
  • Latif Ullah Khan
  • Aliya Farooq
  • Kalsoom Akhtar
  • Abdullah M. Asiri


Infrared spectroscopy is an extremely important instrumental tool in applied and basic sciences for the determination of various functional groups. In this chapter, we have described in detail the range of electromagnetic spectrum, IR regions, and basic principal by which IR radiations interact with matter. The identification of various functional groups in different class of organic compounds is also described. A detailed instrumentation is given in later section. The FTIR-ATR and its instrumentation were also explained, and finally its application for the characterization of nanomaterials is described. The application of IR spectroscopy in various fields is explained in detailed. It is noteworthy the IR is only active for that molecule which has a net dipole moment. A molecule and pure element have zero dipole moment, therefore, are not active in IR spectroscopy.


FTIR Electromagnetic spectrum Instrumentation Nanomaterials Organic compounds Applications 



The authors highly acknowledge the Chemistry Department and Center of Excellence for Advanced Materials Research King Abdulaziz University, Jeddah, Saudi Arabia and Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan for providing facility.


  1. 1.
    Shrivastava, N., Khan, L., Vargas, J., Ospina, C., Coaquira, J., Zoppellaro, G., Brito, H., Javed, Y., Shukla, D., & Felinto, M. (2017). Efficient multicolor tunability of ultrasmall ternary-doped LaF 3 nanoparticles: Energy conversion and magnetic behavior. Physical Chemistry Chemical Physics, 19, 18660–18670.CrossRefGoogle Scholar
  2. 2.
    Khan, L. U., Brito, H. F., Hölsä, J., Pirota, K. R., Muraca, D., Felinto, M. C., Teotonio, E. E., & Malta, O. L. (2014). Red-green emitting and superparamagnetic nanomarkers containing Fe3O4 functionalized with calixarene and rare earth complexes. Inorganic Chemistry, 53, 12902–12910.CrossRefGoogle Scholar
  3. 3.
    Herschel, W. (1800). XIII. Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks, that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the sun advantageously, with telescopes of large apertures and high magnifying powers. Philosophical Transactions of the Royal Society of London, 90, 255–283.CrossRefGoogle Scholar
  4. 4.
    Jacquinot, P. (1954). The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalons. JOSA, 44, 761–765.CrossRefGoogle Scholar
  5. 5.
    Fellgett, P. (1958). Equivalent quantum-efficiencies of photographic emulsions. Monthly Notices of the Royal Astronomical Society, 118, 224–233.CrossRefGoogle Scholar
  6. 6.
    Connes, J. R. (1961). Recherches sur la spectroscopie par transformations de Fourier, Éd. de la” Revue d’optique théorique et instrumentale.Google Scholar
  7. 7.
    Chamberlain, G. (1979). Analysis of covariance with qualitative data. Cambridge, MA: National Bureau of Economic Research.CrossRefGoogle Scholar
  8. 8.
    Kauppinen, J., & Partanen, J. Frontmatter and index, fourier transforms in spectroscopy, i–ix.Google Scholar
  9. 9.
    Rubens, H., & Wood, R. (1911). XXVII. Focal isolation of long heat-waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 249–261. CrossRefGoogle Scholar
  10. 10.
    Rubens, H., & Von Baeyer, O. (1911). LXXX. On extremely long waves, emitted by the quartz mercury lamp. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 21, 689–695.CrossRefGoogle Scholar
  11. 11.
    Illingworth, K. (1927). A repetition of the Michelson-Morley experiment using Kennedy’s refinement. Physical Review, 30, 692.CrossRefGoogle Scholar
  12. 12.
    Camy-Peyret, C., Flaud, J.-M., Mandin, J.-Y., Chevillard, J.-P., Brault, J., Ramsay, D., Vervloet, M., & Chauville, J. (1985). The high-resolution spectrum of water vapor between 16500 and 25250 cm−1. Journal of Molecular Spectroscopy, 113, 208–228.CrossRefGoogle Scholar
  13. 13.
    Blakeney, A. B., Harris, P. J., Henry, R. J., & Stone, B. A. (1983). A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydrate Research, 113, 291–299.CrossRefGoogle Scholar
  14. 14.
    Kauppinen, J. (1979). Working resolution of 0.010 cm−1 between 20 cm−1 and 1200 cm−1 by a Fourier spectrometer. Applied Optics, 18, 1788–1796.CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X. (2015). Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. International Journal of Molecular Sciences, 16, 30223–30250.CrossRefGoogle Scholar
  16. 16.
    Genzel, R., Lutz, D., Sturm, E., Egami, E., Kunze, D., Moorwood, A., Rigopoulou, D., Spoon, H., Sternberg, A., & Tacconi-Garman, L. (1998). What powers ultraluminous IRAS galaxies? The Astrophysical Journal, 498, 579.CrossRefGoogle Scholar
  17. 17.
    Livingston, D. M. (1973). The master of light: A biography of Albert Abraham Michelson. Chicago: The University Press of Chicago.Google Scholar
  18. 18.
    Smith, B. C. (2011). Fundamentals of fourier transform infrared spectroscopy. Boca Raton: CRC press.CrossRefGoogle Scholar
  19. 19.
    Johnston, S. F. (1991). Fourier transform infrared: A constantly evolving technology. New York: Ellis Horwood.Google Scholar
  20. 20.
    Ng, L. Y., Mohammad, A. W., Leo, C. P., & Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 308, 15–33.CrossRefGoogle Scholar
  21. 21.
    Yao, H., Li, F., Lutkenhaus, J., Kotaki, M., & Sue, H.-J. (2016). High-performance photocatalyst based on nanosized ZnO-reduced graphene oxide hybrid for removal of rhodamine B under visible light irradiation. AIMS Materials Science, 3, 1410.CrossRefGoogle Scholar
  22. 22.
    Khan, S. A., Khan, S. B., & Asiri, A. M. (2015). Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New Journal of Chemistry, 39, 5561–5569.CrossRefGoogle Scholar
  23. 23.
    Hidalgo, D., Bocchini, S., Fontana, M., Saracco, G., & Hernández, S. (2015). Green and low-cost synthesis of PANI–TiO 2 nanocomposite mesoporous films for photoelectrochemical water splitting. RSC Advances, 5, 49429–49438.CrossRefGoogle Scholar
  24. 24.
    Thema, F., Beukes, P., Gurib-Fakim, A., & Maaza, M. (2015). Green synthesis of monteponite CdO nanoparticles by Agathosma betulina natural extract. Journal of Alloys and Compounds, 646, 1043–1048.CrossRefGoogle Scholar
  25. 25.
    Kazarian, S., & Chan, K. (2006). Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1758, 858–867.CrossRefGoogle Scholar
  26. 26.
    Lasch, P., Boese, M., Pacifico, A., & Diem, M. (2002). FT-IR spectroscopic investigations of single cells on the subcellular level. Vibrational Spectroscopy, 28, 147–157.CrossRefGoogle Scholar
  27. 27.
    Choo, L.-P., Wetzel, D. L., Halliday, W. C., Jackson, M., LeVine, S. M., & Mantsch, H. H. (1996). In situ characterization of beta-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophysical Journal, 71, 1672–1679.CrossRefGoogle Scholar
  28. 28.
    Sommer, A. J., Tisinger, L. G., Marcott, C., & Story, G. M. (2001). Attenuated total internal reflection infrared mapping microspectroscopy using an imaging microscope. Applied Spectroscopy, 55, 252–256.CrossRefGoogle Scholar
  29. 29.
    Kazarian, S. G., & Chan, K. A. (2006). Sampling approaches in fourier transform infrared imaging applied to polymers, Characterization of polymer surfaces and thin films (pp. 1–6). Springer. Berlin, Heidelberg.Google Scholar
  30. 30.
    Chan, K., & Kazarian, S. (2003). New opportunities in micro-and macro-attenuated total reflection infrared spectroscopic imaging: Spatial resolution and sampling versatility. Applied Spectroscopy, 57, 381–389.CrossRefGoogle Scholar
  31. 31.
    Colley, C., Kazarian, S., Weinberg, P., & Lever, M. (2004). Spectroscopic imaging of arteries and atherosclerotic plaques. Biopolymers, 74, 328–335.CrossRefGoogle Scholar
  32. 32.
    Petibois, C., & Desbat, B. (2010). Clinical application of FTIR imaging: New reasons for hope. Trends in Biotechnology, 28, 495–500.CrossRefGoogle Scholar
  33. 33.
    Herschel, W. (1801). Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philosophical Transactions of the Royal Society of London, 91, 265–318.CrossRefGoogle Scholar
  34. 34.
    Coblentz, W. W. (1905). Investigations of infra-red spectra. Washington, DC: Carnegie institution of Washington.Google Scholar
  35. 35.
    Smith, A. L. (1979). Applied infrared spectroscopy: Fundamentals, techniques, and analytical problem-solving. New York: Wiley.Google Scholar
  36. 36.
    Rothschild, K. J. (2016). The early development and application of FTIR difference spectroscopy to membrane proteins: A personal perspective. Biomedical Spectroscopy and Imaging, 5, 231–267.CrossRefGoogle Scholar
  37. 37.
    Derrick, M. R., Stulik, D., & Landry, J. M. (2000). Infrared spectroscopy in conservation science. Los Angeles: Getty Publications.Google Scholar
  38. 38.
    Elliott, A., & Ambrose, E. (1950). Structure of synthetic polypeptides. Nature, 165, 921–922.CrossRefGoogle Scholar
  39. 39.
    Elliott, A., Ambrose, E., & Robinson, C. (1950). Chain configurations in natured and denatured insulin: Evidence from infra-red spectra. Nature, 166, 194–194.CrossRefGoogle Scholar
  40. 40.
    Anderson, D., & Bellamy, L. J. (1975). The infrared spectra of complex molecules. London: Chapman and Hall xix+ 433 pp., price£ 8.00, Elsevier, 1976.Google Scholar
  41. 41.
    Miyazawa, T., & Shimanouchi, T. (1958). S.i. Mizushima, normal vibrations of N-methylacetamide. The Journal of Chemical Physics, 29, 611–616.CrossRefGoogle Scholar
  42. 42.
    Jabs, A. (2005). Determination of secondary structure in proteins by fourier transform infrared spectroscopy (FTIR), Jena Library of Biological Molecules [online][cited 16. 2. 2011]. Available online:

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shahid Ali Khan
    • 1
    • 2
    • 3
  • Sher Bahadar Khan
    • 2
    • 3
    Email author
  • Latif Ullah Khan
    • 4
  • Aliya Farooq
    • 5
  • Kalsoom Akhtar
    • 6
  • Abdullah M. Asiri
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of SwabiAnbarPakistan
  2. 2.Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Brazilian Nanotechnology National Laboratory (LNNano)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  5. 5.Department of ChemistryShaheed Benazir Bhutto Women UniversityPeshawarPakistan
  6. 6.Division of Nano Sciences and Department of ChemistryEwha Womans UniversitySeoulSouth Korea

Personalised recommendations