31P Solid-State NMR Spectroscopy of Adsorbed Phosphorous Probe Molecules: Acidity Characterization of Solid Acid Carbonaceous Materials for Catalytic Applications

  • Bhaskar Garg


In recent years, solid acid catalysis has evolved as sustainable route or eco-friendly replacement for their homogeneous counterparts in both industrial and academic settings. In this context, the acidity characterization of solid acid catalysts, in particular carbonaceous materials and composites, using phosphorus-31 magic-angle-spinning solid-state nuclear magnetic resonance (31P MAS SSNMR) spectroscopy is significantly influencing the current state-of-the-art at the interface of materials science and analytical chemistry. This book chapter provides a fair insight about 31P MAS SSNMR of adsorbed phosphorous probe molecules being used for the characterization of surface acidic properties of a variety of carbonaceous materials including graphene. In line with this, the catalytic applications of these carbon-based solid acid catalysts have also been discussed appropriately.


Solid-state NMR Carbonaceous materials Graphene Magic-angle spinning Chemical shift Recoupling technique(s) in SSNMR 



Dr. B. Garg is thankful to the Science and Engineering Research Board (SERB), New Delhi, Government of India (YSS/2015/002036), for financial support. B. Garg additionally thanks to all the publishers for providing permissions in reusing the figures and schemes.


  1. 1.
    Chauhan, S. M. S., Garg, B., & Bisht, T. (2007). Synthesis of calix[4]pyrroles by Amberlyst-15 catalyzed cyclocondensations of pyrrole with selected ketones. Molecules, 12, 2458–2466.CrossRefGoogle Scholar
  2. 2.
    Yamato, T. (1998). Recent developments of perfluorinated resin sulfonic acid (Nafion-H). Recent Research Development in Pure & Applied Chemistry, 2, 297–310.Google Scholar
  3. 3.
    Mizuno, N., & Misono, M. (1998). Heterogeneous catalysis. Chemical Reviews, 98, 199–217.CrossRefGoogle Scholar
  4. 4.
    Okuhara, T. (2002). Water-tolerant solid acid catalysts. Chemical Reviews, 102, 3641–3666.CrossRefGoogle Scholar
  5. 5.
    Harmer, M. A., Farneth, W. E., & Sun, Q. (1996). High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst. Journal of the American Chemical Society, 118, 7708–7715.CrossRefGoogle Scholar
  6. 6.
    Suwannakarn, K., Lotero, E., Goodwin, J. G., Jr., & Lu, C. (2008). Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. Journal of Catalysis, 255, 279–286.CrossRefGoogle Scholar
  7. 7.
    Onda, A., Ochi, T., & Yanagisawa, K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 10, 1033–1037.CrossRefGoogle Scholar
  8. 8.
    Wang, X., Liu, R., Waje, M. M., Chen, Z., Yan, Y., Bozhilov, K. N., & Feng, P. (2007). Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalysts. Chemistry of Materials, 19, 2395–2397.CrossRefGoogle Scholar
  9. 9.
    Yu, H., Jin, Y., Li, Z., Peng, F., & Wang, H. (2008). Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst. Journal of Solid State Chemistry, 181, 432–438.CrossRefGoogle Scholar
  10. 10.
    Garg, B., & Ling, Y.-C. (2013). Versatilities of graphene-based catalysts in organic transformations. Green Materials, 1, 47–61.CrossRefGoogle Scholar
  11. 11.
    Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44, 7022–7024.CrossRefGoogle Scholar
  12. 12.
    Patil, M. K., Prasad, A. N., & Reddy, B. M. (2011). Zirconia-based solid acids: Green and heterogeneous catalysts for organic synthesis. Current Organic Chemistry, 15, 3961–3985.CrossRefGoogle Scholar
  13. 13.
    Wada, E., Kitano, M., Yamamoto, K., Nakajima, K., Hayashi, S., & Hara, M. (2016). Synthesis of niobium-doped titanate nanotubes as solid acid catalysts. Catalysis Science & Technology, 6, 4832–4839.CrossRefGoogle Scholar
  14. 14.
    Jiang, J., Gándara, F., Zhang, Y.-B., Na, K., Yaghi, O. M., & Klemperer, W. G. (2014). Superacidity in sulfated metal-organic framework-808. Journal of the American Chemical Society, 136, 12844–12847.CrossRefGoogle Scholar
  15. 15.
    Niwa, M., Suzuki, K., Isamoto, K., & Katada, N. (2006). Identification and measurements of strong Brønsted acid site in ultrastable Y (USY) zeolite. The Journal of Physical Chemistry B, 110, 264–269.CrossRefGoogle Scholar
  16. 16.
    Corma, A. (1995). Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 95, 559–614.CrossRefGoogle Scholar
  17. 17.
    Knözinger, H., Kriltenbrink, H., & Ratnasamy, P. (1977). 2,6-Disubstituted pyridines as probe molecules for surface acid sites-an infrared spectroscopic study. Journal of Catalysis, 48, 436–439.CrossRefGoogle Scholar
  18. 18.
    Benesi, H. A. (1956). Acidity of catalyst surfaces. I. Acid strength from colors of adsorbed indicators. Journal of the American Chemical Society, 78, 5490–5494.CrossRefGoogle Scholar
  19. 19.
    Moscou, L., & Moné, R. J. (1973). Structure and catalytic properties of thermally and hydrothermally treated zeolites: Acid strength distribution of REX and REY. Journal of Catalysis, 30, 417–422.CrossRefGoogle Scholar
  20. 20.
    Cardona-Martinez, N., & Dumesic, J. A. (1992). Applications of adsorption microcalorimetry to the study of heterogeneous catalysis. Advances in Catalysis, 38, 149–244.Google Scholar
  21. 21.
    Drago, R. S., Dias, S. C., Torrealba, M., & de Lima, L. (1997). Calorimetric and spectroscopic investigation of the acidity of HZSM-5. Journal of the American Chemical Society, 119, 4444–4452.CrossRefGoogle Scholar
  22. 22.
    Bhan, A., Allian, A., Sunley, G., Law, D., & Iglesia, E. (2007). Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls. Journal of the American Chemical Society, 129, 4919–4924.CrossRefGoogle Scholar
  23. 23.
    Zecchina, A., Spoto, G., & Bordiga, S. (2005). Probing the acid sites in confined spaces of microporous materials by vibrational spectroscopy. Physical Chemistry Chemical Physics, 7, 1627–1642.CrossRefGoogle Scholar
  24. 24.
    Lavalley, J.-C., Anquetil, R., Czyzniewska, J., & Ziolek, M. (1996). Use of pyridine as a probe for the determination, by IR spectroscopy, of the Brønsted acid strength of MIHNaY zeolites. Journal of the Chemical Society, Faraday Transactions, 92, 1263–1266.CrossRefGoogle Scholar
  25. 25.
    Busca, G. (1999). The surface acidity of solid oxides and its characterization by IR spectroscopic methods. An attempt at systematization. Physical Chemistry Chemical Physics, 1, 723–736.CrossRefGoogle Scholar
  26. 26.
    Busca, G. (1998). Spectroscopic characterization of the acid properties of metal oxide catalysts. Catalysis Today, 41, 191–206.CrossRefGoogle Scholar
  27. 27.
    Sulikowski, B., Datka, J., Gil, B., Ptaszynski, J., & Klinowski, J. (1997). Acidity and catalytic properties of dealuminated zeolite Y. The Journal of Physical Chemistry B, 101, 6929–6932.CrossRefGoogle Scholar
  28. 28.
    Peng, L., Liu, Y., Kim, N., & Readman, J. E. (2005). Detection of Brønsted acid sites in zeolite HY with high-field 17O-MAS-NMR techniques. Nature Materials, 4, 216–219.CrossRefGoogle Scholar
  29. 29.
    Hunger, M. (1997). Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catalysis Reviews: Science and Engineering, 39, 345–393.CrossRefGoogle Scholar
  30. 30.
    Zheng, A., Hung, S.-J., Wang, Q., Zhang, H., Deng, F., & Liu, S.-B. (2013). Progress in development and application of solid-state NMR for solid acid catalysis. Chinese Journal of Catalysis, 34, 436–491.CrossRefGoogle Scholar
  31. 31.
    Zheng, A., Liu, S.-B., & Deng, F. (2013). Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nuclear Magnetic Resonance, 55-56, 12–27 and references there in.CrossRefGoogle Scholar
  32. 32.
    Kotrla, J., Kubelkova, L., Lee, C. C., & Gorte, R. J. (1998). Calorimetric and FTIR studies of acetonitrile on H-[Fe]ZSM-5 and H-[Al]ZSM-5. The Journal of Physical Chemistry B, 102, 1437–1443.CrossRefGoogle Scholar
  33. 33.
    Farneth, W. E., & Gorte, R. J. (1995). Methods for characterizing zeolite acidity. Chemical Reviews, 95, 615–636.CrossRefGoogle Scholar
  34. 34.
    Zheng, A., Hung, S.-J., Liu, S.-B., & Deng, F. (2011). Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Physical Chemistry Chemical Physics, 13, 14889–14901 and references there in.CrossRefGoogle Scholar
  35. 35.
    Hunger, M., Ernst, S., Steuernagel, S., & Weitkamp, J. (1996). High-field 1H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22. Microporous Materials, 6, 349–353.CrossRefGoogle Scholar
  36. 36.
    Peng, L., Huo, H., Liu, Y., & Grey, C. P. (2007). 17O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5. Journal of the American Chemical Society, 129, 335–346.CrossRefGoogle Scholar
  37. 37.
    Pfeifer, H., & Ernst, H. (1994). NMR studies of zeolites. Annual Reports on NMR Spectroscopy, 28, 91–187.CrossRefGoogle Scholar
  38. 38.
    Xu, M., Arnold, A., Buchholz, A., Wang, W., & Hunger, M. (2002). Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum. The Journal of Physical Chemistry B, 106, 12140–12143. CrossRefGoogle Scholar
  39. 39.
    Barich, D. H., Nicholas, J. B., Xu, T., & Haw, J. F. (1998). Theoretical and experimental study of the 13C chemical shift tensors of acetone complexed with Brønsted and Lewis acids. Journal of the American Chemical Society, 120, 12342–12350.CrossRefGoogle Scholar
  40. 40.
    Haw, J. F., Nicholas, J. B., Xu, T., Beck, L. W., & Ferguson, D. B. (1996). Physical organic chemistry of solid acids: Lessons from in situ NMR and theoretical chemistry. Accounts of Chemical Research, 29, 259–267.CrossRefGoogle Scholar
  41. 41.
    Rakiewicz, E. F., Peters, A. W., Wormsbecher, R. F., Sutovich, K. J., & Mueller, K. T. (1998). Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide. The Journal of Physical Chemistry B, 102, 2890–2896.CrossRefGoogle Scholar
  42. 42.
    Osegovic, J. P., & Drago, R. S. (2000). Measurement of the global acidity of solid acids by 31P MAS NMR of chemisorbed triethylphosphine oxide. The Journal of Physical Chemistry B, 104, 147–154.CrossRefGoogle Scholar
  43. 43.
    Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F., & Stucky, G. D. (2000). Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chemistry of Materials, 12, 2448–2459.CrossRefGoogle Scholar
  44. 44.
    Zheng, A., Huang, S.-J., Chen, W.-H., Wu, P.-H., Zhang, H., Lee, H.-K., de Ménorval, L.-C., Deng, F., & Liu, S.-B. (2008). 31P chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts. The Journal of Physical Chemistry A, 112, 7349–7356.CrossRefGoogle Scholar
  45. 45.
    Seo, Y., Cho, K., Jung, Y., & Ryoo, R. (2013). Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin. ACS Catalysis, 3, 713–720.CrossRefGoogle Scholar
  46. 46.
    Zhang, X., Xiao, B., Chen, J., Guo, M., & Yang, Q. (2016). Adjusting the acid strength of hybrid solid acids in confined nanospace. Topics in Catalysis, 59, 1748–1756.CrossRefGoogle Scholar
  47. 47.
    Zheng, A., Li, S., Liu, S.-B., & Deng, F. (2016). Acidic properties and structure-activity correlations of solid acid catalysts revealed by solid-state NMR spectroscopy. Accounts of Chemical Research, 49, 655–663.CrossRefGoogle Scholar
  48. 48.
    Wiper, P. V., Amelse, J., & Mafra, L. (2014). Multinuclear solid-state NMR characterization of the Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO probe molecules. Journal of Catalysis, 316, 240–250.CrossRefGoogle Scholar
  49. 49.
    de Mattos, F. C. G., de Carvalho, E. N. C. B., de Freitas, E. F., Paiva, M. F., Ghesti, G. F., de Macedo, J. L., Dias, S. C. L., & Dias, J. A. (2017). Acidity and characterization of 12-tungstophosphoric acid supported on silica-alumina. Journal of the Brazilian Chemical Society, 28, 336–347.Google Scholar
  50. 50.
    Koito, Y., Nakajima, K., Hasegawa, R., Kobayashi, H., Kitano, M., & Hara, M. (2014). Lewis acid properties of some metal salts for lactic acid formation in water: 31P NMR spectroscopy with trimethylphosphine oxide as a molecular probe. Catalysis Today, 226, 198–203.CrossRefGoogle Scholar
  51. 51.
    Hu, Y., Guo, B., Fu, Y., Ren, Y., Tang, G., Chen, X., Yue, B., & He, H. (2015). Facet-dependent acidic and catalytic properties of sulfated titania solid superacids. Chemical Communications, 51, 14219–14222.CrossRefGoogle Scholar
  52. 52.
    Peng, Y.-K., Ye, L., Qu, J., Zhang, L., Fu, Y., Teixeira, I. F., McPherson, I. J., He, H., & Tsang, S. C. E. (2016). Trimethylphosphine-assisted surface fingerprinting of metal oxide nanoparticle by 31P solid-state NMR: A zinc oxide case study. Journal of the American Chemical Society, 138, 2225–2234.CrossRefGoogle Scholar
  53. 53.
    Kitano, M., Kobayashi, H., Hayashi, S., & Hara, M. (2017). Acid properties of protonated titanate nanotubes. Journal of the Japan Petroleum Institute, 60, 113–120.CrossRefGoogle Scholar
  54. 54.
    Kanthasamy, R., Mbaraka, I. K., Shanks, B. H., & Larsen, S. C. (2007). Solid-state MAS NMR studies of sulfonic acid-functionalized SBA-15. Applied Magnetic Resonance, 32, 513–526.CrossRefGoogle Scholar
  55. 55.
    Li, S.-H., Li, J., Zheng, A.-M., & Deng, F. (2017). Solid-state NMR characterization of the structure and catalytic reaction mechanism of solid acid catalysts. Acta Physico-Chimica Sinica, 33, 270–282.Google Scholar
  56. 56.
    Beckonert, O., Coen, M., Keun, H. C., Wang, Y., Ebbels, T. M. D., & Holmes, E. (2010). High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols, 5, 1019–1032.CrossRefGoogle Scholar
  57. 57.
    Geppi, M., Borsacchi, S., Mollica, G., & Veracini, C. A. (2008). Applications of solid-state NMR to the study of organic/inorganic multicomponent materials. Applied Spectroscopy Reviews, 44, 1–89.CrossRefGoogle Scholar
  58. 58.
    Brown, S. P. (2012). Applications of high-resolution 1H solid-state NMR. Solid State Nuclear Magnetic Resonance, 41, 1–27.CrossRefGoogle Scholar
  59. 59.
    Laws, D. D., Bitter, H.-M. L., & Jerschow, A. (2002). Solid-state NMR spectroscopic methods in chemistry. Angewandte Chemie, International Edition, 41, 3096–3129. CrossRefGoogle Scholar
  60. 60.
    Dracinsky, M., & Hodgkinson, P. (2015). Solid-state NMR studies of nucleic acid components. RSC Advances, 5, 12300–12310.CrossRefGoogle Scholar
  61. 61.
    Ashbrook, S. E., & Sneddon, S. (2014). New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei. Journal of the American Chemical Society, 136, 15440–15456.CrossRefGoogle Scholar
  62. 62.
    Ader, C., Schneider, R., Seidel, K., Etzkorn, M., & Baldus, M. (2007). Magic-angle-spinning NMR spectroscopy applied to small molecules and peptides in lipid bilayers. Biochemical Society Transactions, 35, 991–995.CrossRefGoogle Scholar
  63. 63.
    Bugay, D. E. (1993). Solid-state nuclear magnetic resonance spectroscopy: Theory and pharmaceutical applications. Pharmaceutical Research, 10, 317–327.CrossRefGoogle Scholar
  64. 64.
    Obenaus, U., Dyballa, M., Lang, S., Scheibe, M., & Hunger, M. (2015). Generation and properties of Brønsted acid sites in bifunctional Rh-, Ir-, Pd-, and Pt-containing zeolites Y investigated by solid-state NMR spectroscopy. Journal of Physical Chemistry C, 119, 15254–15262.CrossRefGoogle Scholar
  65. 65.
    Apperley, D. C., Harris, R. K., & Hodgkinson, P. (2012). Solid state NMR: Basic principles and practice. New York: Momentum Press.CrossRefGoogle Scholar
  66. 66.
    MacKenzie, K. J. D., & Smith, M. E. (2002). Multinuclear solid-state NMR of inorganic materials. Oxford: Pergamon Press.Google Scholar
  67. 67.
    Nelson, B. N., Shieber, L. J., Barich, D. H., Lubach, J. W., Offerdahl, T. J., Lewis, D. L., Heinrich, J. P., & Munson, E. J. (2006). Multiple-sample probe for solid-state NMR studies of pharmaceuticals. (2006). Solid State Nuclear Magnetic Resonance, 29, 204–213.CrossRefGoogle Scholar
  68. 68.
    Ashbrook, S. E., & Duer, M. J. (2006). Structural information from quadrupolar nuclei in solid state NMR. Concepts in Magenetic Resonance, 28A, 183–248.CrossRefGoogle Scholar
  69. 69.
    Ashbrook, S. E., & Smith, M. E. (2006). Solid state 17O NMR-an introduction to the background principles and applications to inorganic materials. Chemical Society Reviews, 35, 718–735.CrossRefGoogle Scholar
  70. 70.
    Chapman, R. P., Widdifield, C. M., & Bryce, D. L. (2009). Solid-state NMR of quadrupolar halogen nuclei. Progress in Nuclear Magnetic Resonance Spectroscopy, 55, 215–237.CrossRefGoogle Scholar
  71. 71.
    Freitas, J. C. C., & Smith, M. E. (2012). Chapter 2 – recent advances in solid-state 25Mg NMR spectroscopy. Annual Reports on NMR Spectroscopy, 75, 25–114.CrossRefGoogle Scholar
  72. 72.
    Bräuniger, T., & Jansen, M. Z. (2013). Solid-state NMR spectroscopy of quadrupolar nuclei in inorganic chemistry. Anorg Allg Chem, 639, 857–879.CrossRefGoogle Scholar
  73. 73.
    Vega A. J. (2010). Quadrupolar nuclei in solids. eMagRes.
  74. 74.
    Iwahara, N., Vieru, V., Ungur, L., & Chibotaru, L. F. (2017). Zeeman interaction and Jahn-Teller effect in the Γ 8 multiplet. Physical Review B, 96, 064416–064427.CrossRefGoogle Scholar
  75. 75.
    Andrew, E. R., Bradbury, A., & Eades, R. G. (1959). Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Nature, 183, 1802–1803.CrossRefGoogle Scholar
  76. 76.
    Lowe, I. J. (1959). Free induction decays of rotating solids. Physical Review Letters, 2, 285–287.CrossRefGoogle Scholar
  77. 77.
    Mansfield, P., & Ware, D. (1966). Nuclear resonance line narrowing in solids by repeated short pulse r.f. irradiation. Physical Review Letters, 22, 133–135.CrossRefGoogle Scholar
  78. 78.
    Ostroff, E. D., & Waugh, J. S. (1966). Multiple spin echoes and spin locking in solids. Physical Review Letters, 16, 1097–1098.CrossRefGoogle Scholar
  79. 79.
    Polenova, T., Gupta, R., & Goldbourt, A. (2015). Magic angle spinning NMR spectroscopy: A versatile technique for structural and dynamic analysis of solid-phase systems. Analytical Chemistry, 87, 5458–5469.CrossRefGoogle Scholar
  80. 80.
    Vieth, H.-M., & Yannoni, C. S. (1993). Cross polarization in solid state NMR spectroscopy. Efficient polarization transfer via the non-Zeeman reservoir. Chemical Physics Letters, 205, 153–156.CrossRefGoogle Scholar
  81. 81.
    Pines, A., Gibby, M. G., & Waugh, J. S. (1972). Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. The Journal of Chemical Physics, 56, 1776–1778.CrossRefGoogle Scholar
  82. 82.
    Hartmann, S. R., & Hahn, E. L. (1962). Nuclear double resonance in the rotating frame. Physics Review, 128, 2042–2053.CrossRefGoogle Scholar
  83. 83.
    Wu, G., & Wasylishen, R. E. (1992). Applications of two-dimensional 31P CP/MAS NMR techniques for studying metal phosphine complexes in the solid state. Organometallics, 11, 3242–3248.CrossRefGoogle Scholar
  84. 84.
    Metz, G., Wu, X., & Smith, S. O. (1994). Ramped-amplitude cross polarization in magic-angle-spinning NMR. Journal of Magnetic Resonance, Series A, 110, 219–227.CrossRefGoogle Scholar
  85. 85.
    Hediger, S., Meier, B. H., & Ernst, R. R. (1995). Adiabatic passage Hartmann-Hahn cross polarization in NMR under magic angle sample spinning. Chemical Physics Letters, 240, 449–456.CrossRefGoogle Scholar
  86. 86.
    Bennett, A. E., Rienstra, C. M., Auger, M., Lakshmi, K. V., & Griffin, R. G. (1995). Heteronuclear decoupling in rotating solids. The Journal of Chemical Physics, 103, 6951–6958.CrossRefGoogle Scholar
  87. 87.
    Fung, B. M., Khitrin, A. K., & Ermolaev, K. (2000). An improved broadband decoupling sequence for liquid crystals and solids. Journal of Magnetic Resonance, 142, 97–101.CrossRefGoogle Scholar
  88. 88.
    Paëpe, G. D., Sakellariou, D., Hodgkinson, P., Hediger, S., & Emsley, L. (2003). Heteronuclear decoupling in NMR of liquid crystals using continuous phase modulation. Chemical Physics Letters, 368, 511–522.CrossRefGoogle Scholar
  89. 89.
    Thakur, R. S., Kurur, N. D., & Madhu, P. K. (2006). Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR. Chemical Physics Letters, 426, 459–463.CrossRefGoogle Scholar
  90. 90.
    Reich, H. J., Jautelat, M., Messe, M. T., Weigert, F. J., & Roberts, J. D. (1969). Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of steroids. Journal of the American Chemical Society, 91, 7445–7454.CrossRefGoogle Scholar
  91. 91.
    Ernst, M. (2003). Heteronuclear spin decoupling in solid-state NMR under magic-angle sample spinning. Journal of Magnetic Resonance, 162, 1–34.CrossRefGoogle Scholar
  92. 92.
    Detken, A., Hardy, E. H., Ernst, M., & Meier, B. H. (2002). Simple and efficient decoupling in magic-angle spinning solid-state NMR: The XiX scheme. Chemical Physics Letters, 356, 298–304.CrossRefGoogle Scholar
  93. 93.
    Paëpe, G. D., Lesage, A., & Emsley, L. (2003). The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magic-angle-spinning nuclear magnetic resonance experiments. The Journal of Chemical Physics, 119, 4833–4841.CrossRefGoogle Scholar
  94. 94.
    Vinther, J. M., Nielsen, A. B., Bjerring, M., van Eck, E. R. H., Kentgens, A. P. M., Khaneja, N., & Nielsen, N. C. (2012). Refocused continuous-wave decoupling: A new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy. The Journal of Chemical Physics, 137, 214202–214215.CrossRefGoogle Scholar
  95. 95.
    Vinther, J. M., Khaneja, N., & Nielsen, N. C. (2013). Robust and efficient 19F heteronuclear dipolar decoupling using refocused continuous-wave rf irradiation. Journal of Magnetic Resonance, 226, 88–92.CrossRefGoogle Scholar
  96. 96.
    Waugh, J. S., Huber, L. M., & Haeberlen, U. (1968). Approach to high-resolution nmr in solids. Physical Review Letters, 20, 180–182.CrossRefGoogle Scholar
  97. 97.
    Rhim, W.-K., Elleman, D. D., & Vaughan, R. W. (1973). Enhanced resolution for solid state NMR. The Journal of Chemical Physics, 58, 1772–1773.CrossRefGoogle Scholar
  98. 98.
    Vinogradov, E., Madhu, P. K., & Vega, S. (1999). High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment. Chemical Physics Letters, 314, 443–450.CrossRefGoogle Scholar
  99. 99.
    Sakellariou, D., Lesage, A., Hodgkinson, P., & Emsley, L. (2000). Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chemical Physics Letters, 319, 253–260.CrossRefGoogle Scholar
  100. 100.
    Burum, D. P., & Bielecki, A. (1991). An improved experiment for heteronuclear-correlation 2D NMR in solids. Journal of Magnetic Resonance, 94, 645–652.Google Scholar
  101. 101.
    Ryan, L. M., Taylor, R. E., Paff, A. J., & Gerstein, B. C. (1980). An experimental study of resolution of proton chemical shifts in solids: Combined multiple pulse NMR and magic-angle spinning. The Journal of Chemical Physics, 72, 508–515. CrossRefGoogle Scholar
  102. 102.
    Baldus, M. (2007). ICMRBS founder’s medal 2006: Biological solid-state NMR, methods and applications. Journal of Biomolecular NMR, 39, 73–86.CrossRefGoogle Scholar
  103. 103.
    Haeberlen, U., & Waugh, J. S. (1968). Coherent averaging effects in magnetic resonance. Physics Review, 175, 453–467.CrossRefGoogle Scholar
  104. 104.
    Schaefer, J. (2011). Development of REDOR rotational-echo double-resonance NMR by Terry Gullion and Jacob Schaefer [J. Magn. Reson. 81 (1989) 196–200]. Journal of Magnetic Resonance, 213, 421–422.CrossRefGoogle Scholar
  105. 105.
    Thompson, L. K. (2002). Solid-state NMR studies of the structure and mechanisms of proteins. Current Opinion in Structural Biology, 12, 661–669.CrossRefGoogle Scholar
  106. 106.
    Grey, C. P., & Vega, A. J. (1995). Determination of the quadrupole coupling constant of the invisible aluminum spins in zeolite HY with 1H/27Al TRAPDOR NMR. Journal of the American Chemical Society, 117, 8232–8242.CrossRefGoogle Scholar
  107. 107.
    Gullion, T. (1995). Measurement of dipolar interactions between spin-12 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chemical Physics Letters, 246, 325–330.CrossRefGoogle Scholar
  108. 108.
    Chen, L., Lu, X., Wang, Q., Lafon, O., Trébosc, J., & Amoureux, J.-P. (2010). Distance measurement between a spin-1/2 and a half-integer quadrupolar nuclei by solid-state NMR using exact analytical expressions. Journal of Magnetic Resonance, 206, 269–273.CrossRefGoogle Scholar
  109. 109.
    Raleigh, D. P., Levitt, M. H., & Griffin, R. G. (1988). Rotational resonance in solid state NMR. Chemical Physics Letters, 146, 71–76.CrossRefGoogle Scholar
  110. 110.
    Kinnun, J. J., Leftin, A., & Brown, M. F. (2013). Solid-state NMR spectroscopy for the physical chemistry laboratory. Journal of Chemical Education, 90, 123–128.CrossRefGoogle Scholar
  111. 111.
    Bryce, D. L., Bernard, G. M., Gee, M., Lumsden, M. D., Eichele, K., & Wasylishen, R. E. (2001). Practical aspects of modern routine solid-state multinuclear magnetic resonance spectroscopy: One-dimensional experiments. Canadian Journal of Analytical Sciences and Spectroscopy, 46, 46–82.Google Scholar
  112. 112.
    Lunsford, J. H., Rothwell, W. P., & Shen, W. (1985). Acid sites in zeolite Y: A solid-state NMR and infrared study using trimethylphosphine as a probe molecule. Journal of the American Chemical Society, 107, 1540–1547.CrossRefGoogle Scholar
  113. 113.
    Kao, H.-M., Yu, C.-Y., & Yeh, M.-C. (2002). Detection of the inhomogeneity of Brønsted acidity in H-mordenite and H-b zeolites: A comparative NMR study using trimethylphosphine and trimethylphosphine oxide as 31P NMR probes. Microporous and Mesoporous Materials, 53, 1–12.CrossRefGoogle Scholar
  114. 114.
    Yang, G., Zhuang, J., Ma, D., Lan, X., Zhou, L., Liu, X., Han, X., & Bao, X. (2008). A joint experimental-theoretical study on trimethylphosphine adsorption on the Lewis acidic sites present in TS-1 zeolite. Journal of Molecular Structure, 882, 24–29.CrossRefGoogle Scholar
  115. 115.
    Rothwell, W. P., Shen, W., & Lunsford, J. H. (1984). Solid-state phosphorus-31 NMR of a chemisorbed phosphonium ion in HY zeolite: Observation of proton-phosphorus-31 coupling in the solid-state. Journal of the American Chemical Society, 106, 2452–2453.CrossRefGoogle Scholar
  116. 116.
    Zhang, W., Han, X., Liu, X., & Bao, X. (2003). Characterization of the acid sites in dealuminated nanosized HZSM-5 zeolite with the probe molecule trimethylphosphine. Journal of Molecular Catalysis A: Chemical, 194, 107–113.CrossRefGoogle Scholar
  117. 117.
    Luo, Q., Deng, F., Yuan, Z., Yang, J., Zhang, M., Yue, Y., & Ye, C. (2003). Using trimethylphosphine as a probe molecule to study the acid sites in Al-MCM-41 materials by solid-state NMR spectroscopy. The Journal of Physical Chemistry B, 107, 2435–2442.CrossRefGoogle Scholar
  118. 118.
    Yang, J., Janik, M. J., Ma, D., Zheng, A., Zhang, M., Neurock, M., Davis, R. J., Ye, C., & Deng, F. (2005). Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: A combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. Journal of the American Chemical Society, 127, 18274–18280.CrossRefGoogle Scholar
  119. 119.
    Yu, H., Fang, H., Zhang, H., Li, B., & Deng, F. (2009). Acidity of sulfated tin oxide and sulfated zirconia: A view from solid-state NMR spectroscopy. Catalysis Communications, 10, 920–924.CrossRefGoogle Scholar
  120. 120.
    Chu, Y., Yu, Z., Zheng, A., Fang, H., Zhang, H., Huang, S. J., Liu, S. B., & Deng, F. (2011). Acidic strengths of Brønsted and Lewis acid sites in solid acids scaled by 31P NMR chemical shifts of adsorbed trimethylphosphine. Journal of Physical Chemistry C, 115, 7660–7667.CrossRefGoogle Scholar
  121. 121.
    Xu, J., Zheng, A., Yang, J., Su, Y., Wang, J., Zeng, D., Zhang, M., Ye, C., & Deng, F. (2006). Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: A combined solid-state NMR and theoretical calculation study. The Journal of Physical Chemistry B, 110, 10662–10671.CrossRefGoogle Scholar
  122. 122.
    Zhang, H., Yu, H., Zheng, A., Li, S., Shen, W., & Deng, F. (2008). Reactivity enhancement of 2-propanol photocatalysis on SO4 2−/TiO2: Insights from solid-state NMR spectroscopy. Environmental Science & Technology, 42, 5316–5321.CrossRefGoogle Scholar
  123. 123.
    Yang, J., Zhang, M., Deng, F., Luo, Q., Yi, D., & Ye, C. (2003). Solid state NMR study of acid sites formed by adsorption of SO3 onto γ-Al2O3. Chemical Communications, 7, 884–885.CrossRefGoogle Scholar
  124. 124.
    Grey, C. P., Veeman, W. S., & Vega, A. J. (1993). Rotational echo 14N/13C/1H triple resonance solid-state nuclear magnetic resonance: A probe of 13C-14N internuclear distances. The Journal of Chemical Physics, 98, 7711–7724.CrossRefGoogle Scholar
  125. 125.
    Morris, G. A., & Freeman, R. (1979). Enhancement of nuclear magnetic resonance signals by polarization transfer. Journal of the American Chemical Society, 101, 760–762.CrossRefGoogle Scholar
  126. 126.
    Peng, L., Chupas, P. J., & Grey, C. P. (2004). Measuring Brønsted acid densites in zeolite HY with diphosphine molecules and solid state NMR spectroscopy. Journal of the American Chemical Society, 126, 12254–12255.CrossRefGoogle Scholar
  127. 127.
    Peng, L., & Grey, C. P. (2008). Diphosphine probe molecules and solid-state NMR investigations of proximity between acidic sites in zeolite HY. Microporous and Mesoporous Materials, 116, 277–283.CrossRefGoogle Scholar
  128. 128.
    Schnell, I. (2004). Dipolar recoupling in fast-MAS solid-state NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 45, 145–207.CrossRefGoogle Scholar
  129. 129.
    Wang, Y., Wang, F., Song, Q., Xin, Q., Xu, S., & Xu, J. (2013). Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions. Journal of the American Chemical Society, 135, 1506–1515.CrossRefGoogle Scholar
  130. 130.
    Huang, S.-J., Zhao, Q., Chen, W.-H., Han, X., Bao, X., Lo, P.-S., Lee, H.-K., & Liu, S.-B. (2004). Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy. Catalysis Today, 97, 25–34.CrossRefGoogle Scholar
  131. 131.
    Zheng, A., Han, B., Li, B., Liu, S.-B., & Deng, F. (2012). Enhancement of Brønsted acidity in zeolite due to an intermolecular solvent effect in confined micropores. Chemical Communications, 48, 6936–6938.CrossRefGoogle Scholar
  132. 132.
    Kitano, M., Wada, E., Nakajima, K., Hayashi, S., Miyazaki, S., Kobayashi, H., & Hara, M. (2013). Protonated titanate nanotubes with Lewis and Brønsted acidity: Relationship between nanotube structure and catalytic activity. Chemistry of Materials, 25, 385–393.CrossRefGoogle Scholar
  133. 133.
    Han, X., Kuang, Y., Xiong, C., Tang, X., Chen, Q., Hung, C.-T., Liu, L.-L., & Liu, S.-B. (2017). Heterogeneous amino acid-based tungstophosphoric acids as efficient and recyclable catalysts for selective oxidation of benzyl alcohol. Korean Journal of Chemical Engineering, 34, 1914–1923.CrossRefGoogle Scholar
  134. 134.
    Zhao, Q., Chen, W.-H., Huang, S.-J., Wu, Y.-C., Lee, H.-K., & Liu, S.-B. (2002). Discernment and quantification of internal and external acid sites on zeolites. The Journal of Physical Chemistry B, 106, 4462–4469.CrossRefGoogle Scholar
  135. 135.
    Zhao, Q., Chen, W.-H., Huang, S.-J., & Liu, S.-B. (2003). 39 qualitative and quantitative determination of acid sites on solid acid catalysts. Studies in Surface Science and Catalysis, 145, 205–209.CrossRefGoogle Scholar
  136. 136.
    Kojima, N., & Hayashi, S. (2011). Undesorbed dichloromethane in zeolites studied by solid-state NMR. Bulletin of the Chemical Society of Japan, 84, 1090–1095.CrossRefGoogle Scholar
  137. 137.
    Kao, H.-M., Chang, P.-C., Liao, Y.-W., Lee, L.-P., & Chien, C.-H. (2008). Solid-state NMR characterization of the acid sites in cubic mesoporous Al-MCM-48 materials using trimethylphosphine oxide as a 31P NMR probe. Microporous and Mesoporous Materials, 114, 352–364.CrossRefGoogle Scholar
  138. 138.
    Kao, H.-M., Liu, H., Jiang, J.-C., Lin, S.-H., & Grey, C. P. (2000). Determining the structure of trimethylphosphine bound to the Brønsted acid site in zeolite HY: Double-resonance NMR and ab initio studies. The Journal of Physical Chemistry B, 104, 4923–4933.CrossRefGoogle Scholar
  139. 139.
    Han, X., Chen, K., Du, H., Tang, X.-J., Hung, C.-T., Lin, K.-C., & Liu, S.-B. (2016). Novel Keggin-type H4PVMo11O40-based ionic liquid catalysts for n-caprylic acid esterification. Journal of the Taiwan Institute of Chemical Engineers, 58, 203–209.CrossRefGoogle Scholar
  140. 140.
    Chen, W.-H., Ko, H.-S., Sakthivel, A., Huang, S.-J., Liu, S.-B., Lo, A.-Y., & Tsai T-C Liu, S.-B. (2006). A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catalysis Today, 116, 111–120.CrossRefGoogle Scholar
  141. 141.
    Li, S., Zhou, H., Jin, C., Feng, N., Liu, F., Deng, F., Wang, J.-Q., Huang, W., Xiao, L., & Fan, J. (2014). Formation of subnanometer Zr-WOx clusters within mesoporous W-Zr mixed oxides as strong solid acid catalysts for Friedel-crafts alkylation. Journal of Physical Chemistry C, 118, 6283–6290.CrossRefGoogle Scholar
  142. 142.
    Zheng, A., Chen, L., Yang, J., Zhang, M., Su, Y., Yue, Y., Ye, C., & Deng, F. (2005). Combined DFT theoretical calculation and solid-state NMR studies of Al substitution and acid sites in zeolite MCM-22. The Journal of Physical Chemistry B, 109, 24273–24279.CrossRefGoogle Scholar
  143. 143.
    Tagusagawa, C., Takagaki, A., Takanabe, K., Ebitani, K., Hayashi, S., & Domen, K. (2010). Layered and nanosheet tantalum molybdate as strong solid acid catalysts. Journal of Catalysis, 270, 206–212.CrossRefGoogle Scholar
  144. 144.
    Tagusagawa, C., Takagaki, A., Iguchi, A., Takanabe, K., Kondo, J. N., Ebitani, K., Hayashi, S., Tatsumi, T., & Domen, K. (2010). Highly active mesoporous Nb-W oxide solid-acid catalyst. Angewandte Chemie, International Edition, 49, 1128–1132.CrossRefGoogle Scholar
  145. 145.
    Karra, M. D., Sutovich, K. J., & Mueller, K. T. (2002). NMR characterization of Bronsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine oxide. Journal of the American Chemical Society, 124, 902–903.CrossRefGoogle Scholar
  146. 146.
    Li, S., Zheng, A., Su, Y., Zhang, H., Chen, L., Yang, J., Ye, C., & Deng, F. (2007). Brønsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study. Journal of the American Chemical Society, 129, 11161–11171.CrossRefGoogle Scholar
  147. 147.
    Huang, S.-J., Tseng, Y.-H., Mou, Y., Liu, S.-B., Huang, S.-H., Lin, C.-P., & Chan, J. C. C. (2006). Spectral editing based on selective excitation and Lee-Goldburg cross-polarization under magic angle spinning. Solid State Nuclear Magnetic Resonance, 29, 272–277.CrossRefGoogle Scholar
  148. 148.
    van Rossum, B.-J., de Groot, C. P., Ladizhansky, V., Vega, S., & de Groot, H. J. M. (2000). A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. Journal of the American Chemical Society, 122, 3465–3472.CrossRefGoogle Scholar
  149. 149.
    Ladizhansky, V., & Vega, S. (2000). Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. The Journal of Chemical Physics, 112, 7158–7168.CrossRefGoogle Scholar
  150. 150.
    Zheng, A., Zhang, H., Lu, X., & Liu S-B Deng, F. (2008). Theoretical predictions of 31P NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts. The Journal of Physical Chemistry B, 112, 4496–4505.CrossRefGoogle Scholar
  151. 151.
    Garg, B., Bisht, T., & Ling, Y.-C. (2014). Graphene-based nanomaterials as heterogeneous acid catalysts: A comprehensive perspective. Molecules, 19, 14582–14614.CrossRefGoogle Scholar
  152. 152.
    Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J. N., Hayashi, S., & Domen, K. (2004). A carbon material as a strong protonic acid. Angewandte Chemie, International Edition, 43, 2955–2958.CrossRefGoogle Scholar
  153. 153.
    Stellwagen, D. R., van der Klis, F., van Es, D. S., de Jong, K. P., & Bitter, J. H. (2013). Functionalized carbon nanofibers as solid-acid catalysts for transesterification. ChemSusChem, 6, 1668–1672.CrossRefGoogle Scholar
  154. 154.
    Zhang, M., Li, C., Hua, W., Yue, Y., & Gao, Z. (2014). Preparation and catalytic performance of perfluorosulfonic acid-functionalized carbon nanotubes. Chinese Journal of Catalysis, 35, 1874–1882.CrossRefGoogle Scholar
  155. 155.
    Wang, L., Dong, X., Jiang, H., Li, G., & Zhang, M. (2014). Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catalysis Communications, 56, 164–167.CrossRefGoogle Scholar
  156. 156.
    Sun, Y., Hu, J., An, S., Zhang, Q., Guo, Y., Song, D., & Shang, Q. (2017). Selective esterification of glycerol with acetic acid or lauric acid over rod-like carbon-based sulfonic acid functionalized ionic liquids. Fuel, 207, 136–145.CrossRefGoogle Scholar
  157. 157.
    Chang, B., Guo, Y., Yin, H., Zhang, S., & Yang, B. (2015). Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route. Journal of Solid State Chemistry, 221, 384–390.CrossRefGoogle Scholar
  158. 158.
    Zhao, J., Zhou, C., He, C., Dai, Y., Jia, X., & Yang, Y. (2016). Efficient dehydration of fructose to 5-hydroxymethylfurfural oversulfonated carbon sphere solid acid catalysts. Catalysis Today, 264, 123–130.CrossRefGoogle Scholar
  159. 159.
    Ngaosuwan, K., Goodwin, J. G., Jr., & Prasertdham, P. (2016). A green sulfonated carbon-based catalyst derived from coffee residue for esterification. Renewable Energy, 86, 262–269.CrossRefGoogle Scholar
  160. 160.
    Zhou, Y., Niu, S., & Li, J. (2016). Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Conversion and Management, 114, 188–196.CrossRefGoogle Scholar
  161. 161.
    Zhou, L., Dong, B., Tang, S., Ma, H., Chen, C., Yang, X., & Xu, J. (2013). Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide. Journal of Energy Chemistry, 22, 659–664.CrossRefGoogle Scholar
  162. 162.
    Poonjarernsilp, C., Sanoa, N., & Tamon, H. (2014). Hydrothermally sulfonated single-walled carbon nanohorns for use as solid catalysts in biodiesel production by esterification of palmitic acid. Applied Catalysis B: Environmental, 147, 726–732.CrossRefGoogle Scholar
  163. 163.
    Nakajima, K., & Hara, M. (2012). Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catalysis, 2, 1296–1304.CrossRefGoogle Scholar
  164. 164.
    Okamura, M., Takagaki, A., Toda, M., Kondo, J. N., Domen, K., Tatsumi, T., Hara, M., & Hayashi, S. (2006). Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials, 18, 3039–3045.CrossRefGoogle Scholar
  165. 165.
    Nakajima, K., Okamura, M., Kondo, J. N., Domen, K., Tatsumi, T., Hayashi, S., & Hara, M. (2009). Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chemistry of Materials, 21, 186–193.CrossRefGoogle Scholar
  166. 166.
    Suganuma, S., Nakajima, K., Kitano, M., Kato, H., Tamura, A., Kondo, H., Yanagawa, S., Hayashi, S., & Hara, M. (2011). SO3H-bearing mesoporous carbon with highly selective catalysis. Microporous and Mesoporous Materials, 143, 443–450.CrossRefGoogle Scholar
  167. 167.
    Aldana-Pérez, A., Lartundo-Rojas, L., Gómez, R., & Niño-Gómez, M. E. (2012). Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 100, 128–138.CrossRefGoogle Scholar
  168. 168.
    Fraile, J. M., García-Bordejé, E., Pires, E., & Roldán, L. (2014). New insights into the strength and accessibility of acid sites of sulfonated hydrothermal carbon. Carbon, 77, 1157–1167.CrossRefGoogle Scholar
  169. 169.
    Li, Y., & Zeng, D. (2017). Synthesis and characterization of flower-like carbon spheres solid acid from glucose for esterification. Materials Letters, 193, 172–175.CrossRefGoogle Scholar
  170. 170.
    Russo, P. A., Antunes, M. M., Neves, P., Wiper, P. V., Fazio, E., Neri, F., Barreca, F., Mafra, L., Pillinger, M., Pinna, N., & Valente, A. A. (2014). Solid acids with SO3H groups and tunable surface properties: Versatile catalysts for biomass conversion. Journal of Materials Chemistry A, 2, 11813–11824.CrossRefGoogle Scholar
  171. 171.
    Russo, P. A., Antunes, M. M., Neves, P., Wiper, P. V., Fazio, E., Neri, F., Barreca, F., Mafra, L., Pillinger, M., Pinna, N., & Valente, A. A. (2014). Mesoporous carbon-silica solid acid catalysts for producing useful bio-products within the sugar-platform of biorefineries. Green Chemistry, 16, 4292–4305.CrossRefGoogle Scholar
  172. 172.
    Bispo, C., Vigier, K. D. O., Sardo, M., Bion, N., Mafra, L., Ferreira, P., & Jérôme, F. (2014). Catalytic dehydration of fructose to HMF over sulfonic acid functionalized periodic mesoporous organosilicas: Role of the acid density. Catalysis Science & Technology, 4, 2235–2240.CrossRefGoogle Scholar
  173. 173.
    Zeng, D., Liu, S., Gong, W., Wang, G., Qiu, J., & Tian, Y. (2013). Acid properties of solid acid from petroleum coke by chemical activation and sulfonation. Catalysis Communications, 40, 5–8.CrossRefGoogle Scholar
  174. 174.
    Zeng, D., Liu, S., Gong, W., Wang, G., Qiu, J., & Chen, H. (2014). Synthesis, characterization and acid catalysis of solid acid from peanut shell. Applied Catalysis A: General, 469, 284–289.CrossRefGoogle Scholar
  175. 175.
    Garg, B., & Ling, Y.-C. (2014). One-pot green synthesis of azides from alcohols using Brønsted acidic ionic liquid [HMIM][BF4] as solvent and catalyst. Journal of the Chinese Chemical Society, 61, 737–742.CrossRefGoogle Scholar
  176. 176.
    Garg, B., & Ling, Y.-C. (2012). Highly efficient synthesis of N-confused meso-tetraspirocyclohexyl calix[4]pyrrole using Brønsted acidic ionic liquids as catalysts. Tetrahedron Letters, 53, 5674–5677.CrossRefGoogle Scholar
  177. 177.
    Liu, F., Kong, W., Wang, L., Yi, X., Noshadi, I., Zheng, A., & Qi, C. (2015). Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups. Green Chemistry, 17, 480–489.CrossRefGoogle Scholar
  178. 178.
    Liu, F., Li, B., Liu, C., Kong, W., Yi, X., Zheng, A., & Qi, C. (2016). Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catalysis Science & Technology, 6, 2995–3007.CrossRefGoogle Scholar
  179. 179.
    Noshadi, I., Kanjilal, B., & Liu, F. (2016). Porous carbonaceous solid acids derived from farm animal waste and their use in catalyzing biomass transformation. Applied Catalysis A: General, 513, 19–29.CrossRefGoogle Scholar
  180. 180.
    Liu, F., Zheng, A., Noshadi, I., & Xiao, F.-S. (2013). Design and synthesis of hydrophobic and stable mesoporous polymeric solid acid with ultra strong acid strength and excellent catalytic activities for biomass transformation. Applied Catalysis B: Environmental, 136-137, 193–201.CrossRefGoogle Scholar
  181. 181.
    Garg, B., Sung, C.-H., & Ling, Y.-C. (2015). Graphene-based nanomaterials as molecular imaging agents. WIREs Nanomedicine and Nanobiotechnology, 7, 737–758.CrossRefGoogle Scholar
  182. 182.
    Garg, B., Bisht, T., & Ling, Y.-C. (2015). Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: An overview. Molecules, 20, 14155–14190.CrossRefGoogle Scholar
  183. 183.
    Ke, Y., Garg, B., & Ling, Y.-C. (2016). A novel graphene-based label-free fluorescence ‘turn-on’ nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells. Nanoscale, 8, 4547–4556.CrossRefGoogle Scholar
  184. 184.
    Garg, B., Bisht, T., & Ling, Y.-C. (2016). Graphene-based nanomaterials: Versatile catalysts for carbon-carbon bond forming reactions. Current Organic Chemistry, 20, 1547–1566.CrossRefGoogle Scholar
  185. 185.
    Garg, B., & Bisht, T. (2016). Carbon nanodots as peroxidase nanozymes for biosensing. Molecules, 21, 1653.CrossRefGoogle Scholar
  186. 186.
    Garg, B., & Ling, Y.-C. (2016). Chapter 10: The richness of graphene-based materials in biomimetic applications. In M. Aliofkhazraei, N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, & J. L. Gervasoni (Eds.), Graphene science handbook: Applications and industrialization (pp. 125–142). Taylor & Francis/CRC Press, Boca Raton.Google Scholar
  187. 187.
    Garg, B., Bisht, T., & Thomas, K. R. J. (2017). Chapter 9: Magnetic graphene nanocomposites for multi-functional applications. In S. K. Sharma (Ed.), Complex magnetic nanostructures-synthesis, assembly and applications (pp. 317–357). Cham: Springer International Publishing AG.CrossRefGoogle Scholar
  188. 188.
    Garg, B., Bisht, T., & Ling, Y.-C. (2014). Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers. RSC Advances, 4, 57297–57307.CrossRefGoogle Scholar
  189. 189.
    Antunes, M. M., Russo, P. A., Wiper, P. V., Veiga, J. M., Pillinger, M., Mafra, L., Evtuguin, D. V., Pinna, N., & Valente, A. A. (2014). Sulfonated graphene oxide as effective catalyst for conversion of 5-(hydroxymethyl)-2-furfural into biofuels. ChemSusChem, 7, 804–812.CrossRefGoogle Scholar
  190. 190.
    Oger, N., Lin, Y. F., Labrugère, C., Grognec, E. L., Rataboul, F., & Felpin, F.-R. (2016). Practical and scalable synthesis of sulfonated graphene. Carbon, 96, 342–335.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations