Advertisement

The Role of Dietary Modifications in Controlling Blood Pressure

  • K. Dimitriadis
  • C. Filippou
  • C. Tsioufis
Chapter

Abstract

Hypertension is the result of multiple pathophysiological mechanisms influenced by diverse environmental and genetic parameters Regarding dietary parameters increased sodium intake, inadequate potassium consumption and alcohol play a key role for the pathogenesis and evolution of the hypertensive phenotype. Excess weight usually accompanied by lack of physical activity that characterizes modern lifestyle further contribute to blood pressure (BP) increase. Therefore, lifestyle and dietary interventions are important clinically in order to reduce BP and overall cardiovascular risk. Adoption of the DASH and the Mediterranean diets is related to reduction of BP independently of other lifestyle changes.

Keywords

Sodium Potassium Mediterranean diet DASH diet Hypertension 

References

  1. 1.
    Jordan J, Yumuk V, Schlaich M, Nilsson PM, Zahorska-Markiewicz B, Grassi G, Schmieder RE, Engeli S, Finer N. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J Hypertens. 2012;30(6):1047–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Leggio M, Lombardi M, Caldarone E, Severi P, D'Emidio S, Armeni M, Bravi V, Bendini MG, Mazza A. The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res. 2017;40(12):947–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Wilson PW, D’Agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162(16):1867–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, Marmot M. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ (Clinical research ed). 1996;312(7041):1249–53.CrossRefGoogle Scholar
  5. 5.
    Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371(7):601–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Adrogue HJ, Madias NE. The impact of sodium and potassium on hypertension risk. Semin Nephrol. 2014;34(3):257–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Takase H, Sugiura T, Kimura G, Ohte N, Dohi Y. Dietary sodium consumption predicts future blood pressure and incident hypertension in the Japanese Normotensive General Population. J Am Heart Assoc. 2015;4(8):e001959.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Zhang Z, Cogswell ME, Gillespie C, Fang J, Loustalot F, Dai S, Carriquiry AL, Kuklina EV, Hong Y, Merritt R, et al. Association between usual sodium and potassium intake and blood pressure and hypertension among U.S. adults: NHANES 2005–2010. PloS one. 2013;8(10):e75289.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rodrigues SL, Baldo MP, Machado RC, Forechi L, Molina Mdel C, Mill JG. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J Am Soc Hypertens (JASH). 2014;8(4):232–8.CrossRefGoogle Scholar
  10. 10.
    Kieneker LM, Gansevoort RT, Mukamal KJ, de Boer RA, Navis G, Bakker SJ, Joosten MM. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension (Dallas, Tex : 1979). 2014;64(4):769–76.CrossRefGoogle Scholar
  11. 11.
    Klatsky AL. Alcohol and cardiovascular mortality: common sense and scientific truth. J Am Coll Cardiol. 2010;55(13):1336–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Puddey IB, Beilin LJ. Alcohol is bad for blood pressure. Clin Exp Pharmacol Physiol. 2006;33(9):847–52.PubMedCrossRefGoogle Scholar
  13. 13.
    Puddey IB, Beilin LJ, Vandongen R. Regular alcohol use raises blood pressure in treated hypertensive subjects. A randomised controlled trial. Lancet (London, England). 1987;1(8534):647–51.CrossRefGoogle Scholar
  14. 14.
    Nunez-Cordoba JM, Martinez-Gonzalez MA, Bes-Rastrollo M, Toledo E, Beunza JJ, Alonso A. Alcohol consumption and the incidence of hypertension in a Mediterranean cohort: the SUN study. Rev Esp Cardiol. 2009;62(6):633–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Frisoli TM, Schmieder RE, Grodzicki T, Messerli FH. Beyond salt: lifestyle modifications and blood pressure. Eur Heart J. 2011;32(24):3081–7.PubMedCrossRefGoogle Scholar
  16. 16.
    The treatment of mild hypertension study. A randomized, placebo-controlled trial of a nutritional-hygienic regimen along with various drug monotherapies. The Treatment of Mild Hypertension Research Group. Arch Intern Med. 1991;151(7):1413–23.Google Scholar
  17. 17.
    Elmer PJ, Obarzanek E, Vollmer WM, Simons-Morton D, Stevens VJ, Young DR, Lin PH, Champagne C, Harsha DW, Svetkey LP, et al. Effects of comprehensive lifestyle modification on diet, weight, physical fitness, and blood pressure control: 18-month results of a randomized trial. Ann Intern Med. 2006;144(7):485–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Redon J, Tsioufis C, Bueno H, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.CrossRefGoogle Scholar
  19. 19.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, Depalma SM, Gidding S, Jamerson KA, Jones DW, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and Management of High Blood Pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):2199–269.Google Scholar
  20. 20.
    Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension (Dallas, Tex : 1979). 2003;42(5):878–84.CrossRefGoogle Scholar
  21. 21.
    Stevens VJ, Obarzanek E, Cook NR, Lee IM, Appel LJ, Smith West D, Milas NC, Mattfeldt-Beman M, Belden L, Bragg C, et al. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann Intern Med. 2001;134(1):1–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. The Trials of Hypertension Prevention Collaborative Research Group. Arch Intern Med. 1997;157(6):657–67.Google Scholar
  23. 23.
    He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension (Dallas, Tex : 1979). 2000;35(2):544–9.CrossRefGoogle Scholar
  24. 24.
    Straznicky N, Grassi G, Esler M, Lambert G, Dixon J, Lambert E, Jordan J, Schlaich M. European Society of Hypertension Working Group on Obesity Antihypertensive effects of weight loss: myth or reality? J Hypertens. 2010;28(4):637–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Ryan DH. The pharmacological and surgical management of adults with obesity. J Fam Pract. 2014;63(7 Suppl):S21–6.PubMedGoogle Scholar
  26. 26.
    He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ (Clinical research ed). 2013;346:f1325.Google Scholar
  27. 27.
    Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ (Clinical research ed). 2013;346:f1326.Google Scholar
  28. 28.
    MacGregor GA, Markandu ND, Sagnella GA, Singer DR, Cappuccio FP. Double-blind study of three sodium intakes and long-term effects of sodium restriction in essential hypertension. Lancet (London, England). 1989;2(8674):1244–7.CrossRefGoogle Scholar
  29. 29.
    Benetos A, Xiao YY, Cuche JL, Hannaert P, Safar M. Arterial effects of salt restriction in hypertensive patients. A 9-week, randomized, double-blind, crossover study. J Hypertens. 1992;10(4):355–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Fotherby MD, Potter JF. Effects of moderate sodium restriction on clinic and twenty-four-hour ambulatory blood pressure in elderly hypertensive subjects. J Hypertens. 1993;11(6):657–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Cappuccio FP, Markandu ND, Carney C, Sagnella GA, MacGregor GA. Double-blind randomised trial of modest salt restriction in older people. Lancet (London, England). 1997;350(9081):850–4.CrossRefGoogle Scholar
  32. 32.
    Gates PE, Tanaka H, Hiatt WR, Seals DR. Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension (Dallas, Tex : 1979). 2004;44(1):35–41.CrossRefGoogle Scholar
  33. 33.
    Melander O, von Wowern F, Frandsen E, Burri P, Willsteen G, Aurell M, Hulthen UL. Moderate salt restriction effectively lowers blood pressure and degree of salt sensitivity is related to baseline concentration of renin and N-terminal atrial natriuretic peptide in plasma. J Hypertens. 2007;25(3):619–27.PubMedCrossRefGoogle Scholar
  34. 34.
    Kojuri J, Rahimi R. Effect of “no added salt diet” on blood pressure control and 24 hour urinary sodium excretion in mild to moderate hypertension. BMC Cardiovasc Disord. 2007;7:34.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dickinson KM, Keogh JB, Clifton PM. Effects of a low-salt diet on flow-mediated dilatation in humans. Am J Clin Nutr. 2009;89(2):485–90.PubMedCrossRefGoogle Scholar
  36. 36.
    He FJ, Marciniak M, Visagie E, Markandu ND, Anand V, Dalton RN, MacGregor GA. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension (Dallas, Tex : 1979). 2009;54(3):482–8.CrossRefGoogle Scholar
  37. 37.
    He J, Gu D, Chen J, Jaquish CE, Rao DC, Hixson JE, Chen JC, Duan X, Huang JF, Chen CS, et al. Gender difference in blood pressure responses to dietary sodium intervention in the GenSalt study. J Hypertens. 2009;27(1):48–54.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Liu F, Chen P, Li D, Yang X, Huang J, Gu D. Ambulatory blood pressure and blood pressure load responses to low sodium intervention in Han Chinese population. Clin Exp Hypertens. 2015;37(7):551–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2017;4:Cd004022.PubMedGoogle Scholar
  40. 40.
    Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH Jr, Kostis JB, Kumanyika S, Lacy CR, Johnson KC, Folmar S, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group. JAMA. 1998;279(11):839–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Stamler J. The INTERSALT Study: background, methods, findings, and implications. Am J Clin Nutr. 1997;65(2 Suppl):626s–42s.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou BF, Stamler J, Dennis B, Moag-Stahlberg A, Okuda N, Robertson C, Zhao L, Chan Q, Elliott P. Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: the INTERMAP study. J Hum Hypertens. 2003;17(9):623–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Cappucio FP, Markandu ND, Carney C, Sagnella GA, MacGregor GA. Double-blind randomized trial of modest salt restriction in older people. Lancet. 1997;350:850–4.CrossRefGoogle Scholar
  44. 44.
    Koliaki C, Katsilambros N. Dietary sodium, potassium, and alcohol: key players in the pathophysiology, prevention, and treatment of human hypertension. Nutr Rev. 2013;71(6):402–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. 2003;17(7):471–80.PubMedCrossRefGoogle Scholar
  46. 46.
    Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ (Clinical research ed). 2013;346:f1378.Google Scholar
  47. 47.
    Whelton PK, He J. Health effects of sodium and potassium in humans. Curr Opin Lipidol. 2014;25(1):75–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Dyer AR, Elliott P, Shipley M. Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT Study. II. Estimates of electrolyte-blood pressure associations corrected for regression dilution bias. The INTERSALT Cooperative Research Group. Am J Epidemiol. 1994;139(9):940–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Tapsell LC, Neale EP, Satija A, Hu FB. Foods, nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv Nutr (Bethesda, Md). 2016;7(3):445–54.CrossRefGoogle Scholar
  50. 50.
    Jacobs DR Jr, Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr. 2003;78(3 Suppl):508s–13s.PubMedCrossRefGoogle Scholar
  51. 51.
    Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Moore TJ, Vollmer WM, Appel LJ, Sacks FM, Svetkey LP, Vogt TM, Conlin PR, Simons-Morton DG, Carter-Edwards L, Harsha DW. Effect of dietary patterns on ambulatory blood pressure : results from the Dietary Approaches to Stop Hypertension (DASH) Trial. DASH Collaborative Research Group. Hypertension (Dallas, Tex : 1979). 1999;34(3):472–7.CrossRefGoogle Scholar
  53. 53.
    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Lopes HF, Martin KL, Nashar K, Morrow JD, Goodfriend TL, Egan BM. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension (Dallas, Tex : 1979). 2003;41(3):422–30.CrossRefGoogle Scholar
  55. 55.
    Nowson CA, Worsley A, Margerison C, Jorna MK, Frame AG, Torres SJ, Godfrey SJ. Blood pressure response to dietary modifications in free-living individuals. J Nutr. 2004;134(9):2322–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, Conlin PR, Erlinger TP, Rosner BA, Laranjo NM, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005;294(19):2455–64.PubMedCrossRefGoogle Scholar
  57. 57.
    Marquez-Celedonio FG, Texon-Fernandez O, Chavez-Negrete A, Hernandez-Lopez S, Marin-Rendon S, Berlin-Lascurain S. Clinical effect of lifestyle modification on cardiovascular risk in prehypertensives: PREHIPER I study. Rev Esp Cardiol. 2009;62(1):86–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Nowson CA, Wattanapenpaiboon N, Pachett A. Low-sodium Dietary Approaches to Stop Hypertension-type diet including lean red meat lowers blood pressure in postmenopausal women. Nutr Res (New York, NY). 2009;29(1):8–18.CrossRefGoogle Scholar
  59. 59.
    Al-Solaiman Y, Jesri A, Mountford WK, Lackland DT, Zhao Y, Egan BM. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre. J Hum Hypertens. 2010;24(4):237–46.PubMedCrossRefGoogle Scholar
  60. 60.
    Malloy-McFall J, Barkley JE, Gordon KL, Burzminski N, Glickman EL. Effect of the DASH diet on pre- and stage 1 hypertensive individuals in a free-living environment. Nutr Metab Insights. 2010;3:15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Harnden KE, Frayn KN, Hodson L. Dietary Approaches to Stop Hypertension (DASH) diet: applicability and acceptability to a UK population. J Hum Nutr Diet. 2010;23(1):3–10.PubMedCrossRefGoogle Scholar
  62. 62.
    Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, Caccia C, Johnson J, Waugh R, Sherwood A. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lin PH, Allen JD, Li YJ, Yu M, Lien LF, Svetkey LP. Blood pressure-lowering mechanisms of the DASH dietary pattern. J Nutr Metab. 2012;2012:472396.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Whitt-Glover MC, Hunter JC, Foy CG, Quandt SA, Vitolins MZ, Leng I, Hornbuckle LM, Sanya KA, Bertoni AG. Translating the Dietary Approaches to Stop Hypertension (DASH) diet for use in underresourced, urban African American communities, 2010. Prev Chronic Dis. 2013;10:120088.PubMedCrossRefGoogle Scholar
  65. 65.
    Lima ST, da Silva Nalin de Souza B, Franca AK, Salgado Filho N, Sichieri R. Dietary approach to hypertension based on low glycaemic index and principles of DASH (Dietary Approaches to Stop Hypertension): a randomised trial in a primary care service. Br J Nutr. 2013;110(8):1472–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Wong MC, Wang HH, Kwan MW, Fong BC, Chan WM, Zhang DX, Li ST, Yan BP, Coats AJ, Griffiths SM. Dietary counselling has no effect on cardiovascular risk factors among Chinese Grade 1 hypertensive patients: a randomized controlled trial. Eur Heart J. 2015;36(38):2598–607.PubMedCrossRefGoogle Scholar
  67. 67.
    Jenkins DJ, Jones PJ, Frohlich J, Lamarche B, Ireland C, Nishi SK, Srichaikul K, Galange P, Pellini C, Faulkner D, et al. The effect of a dietary portfolio compared to a DASH-type diet on blood pressure. Nutr Metab Cardiovasc Dis: NMCD. 2015;25(12):1132–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Sayer RD, Wright AJ, Chen N, Campbell WW. Dietary Approaches to Stop Hypertension diet retains effectiveness to reduce blood pressure when lean pork is substituted for chicken and fish as the predominant source of protein. Am J Clin Nutr. 2015;102(2):302–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chiu S, Bergeron N, Williams PT, Bray GA, Sutherland B, Krauss RM. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. Am J Clin Nutr. 2016;103(2):341–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Kawamura A, Kajiya K, Kishi H, Inagaki J, Mitarai M, Oda H, Umemoto S, Kobayashi S. Effects of the DASH-JUMP dietary intervention in Japanese participants with high-normal blood pressure and stage 1 hypertension: an open-label single-arm trial. Hypertens Res. 2016;39(11):777–85.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Naseem S, Ghazanfar H, Assad S, Ghazanfar A. Role of sodium-restricted dietary approaches to control blood pressure in Pakistani hypertensive population. JPMA J Pak Med Assoc. 2016;66(7):837–42.PubMedGoogle Scholar
  72. 72.
    Azadbakht L, Mirmiran P, Esmaillzadeh A, Azizi T, Azizi F. Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome. Diabetes Care. 2005;28(12):2823–31.PubMedCrossRefGoogle Scholar
  73. 73.
    Kucharska A, Gajewska D, Kiedrowski M, Sinska B, Juszczyk G, Czerw A, Augustynowicz A, Bobinski K, Deptala A, Niegowska J. The impact of individualized nutritional therapy according to DASH diet on blood pressure, body mass and selected biochemical parameters in overweight/obese patients with primary arterial hypertension: a prospective randomized study. Kardiol Pol. 2017;76(1):158–65.Google Scholar
  74. 74.
    Wang HH, Wong MC, Mok RY, Kwan MW, Chan WM, Fan CK, Lee CL, Griffiths SM. Factors associated with grade 1 hypertension: implications for hypertension care based on the Dietary Approaches to Stop Hypertension (DASH) in primary care settings. BMC Fam Pract. 2015;16:26.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Harrington JM, Fitzgerald AP, Kearney PM, McCarthy VJ, Madden J, Browne G, Dolan E, Perry IJ. DASH diet score and distribution of blood pressure in middle-aged men and women. Am J Hypertens. 2013;26(11):1311–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Schulze MB, Hoffmann K, Kroke A, Boeing H. Risk of hypertension among women in the EPIC-Potsdam Study: comparison of relative risk estimates for exploratory and hypothesis-oriented dietary patterns. Am J Epidemiol. 2003;158(4):365–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Bai G, Zhang J, Zhao C, Wang Y, Qi Y, Zhang B. Adherence to a healthy lifestyle and a DASH-style diet and risk of hypertension in Chinese individuals. Hypertens Res. 2017;40(2):196–202.PubMedCrossRefGoogle Scholar
  78. 78.
    Saneei P, Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: a systematic review and meta-analysis on randomized controlled trials. Nutr Metab Cardiovasc Dis: NMCD. 2014;24(12):1253–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Siervo M, Lara J, Chowdhury S, Ashor A, Oggioni C, Mathers JC. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):1–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14(12a):2274–84.PubMedCrossRefGoogle Scholar
  81. 81.
    Salas-Salvado J, Garcia-Arellano A, Estruch R, Marquez-Sandoval F, Corella D, Fiol M, Gomez-Gracia E, Vinoles E, Aros F, Herrera C, et al. Components of the Mediterranean-type food pattern and serum inflammatory markers among patients at high risk for cardiovascular disease. Eur J Clin Nutr. 2008;62(5):651–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Strazzullo P, Ferro-Luzzi A, Siani A, Scaccini C, Sette S, Catasta G, Mancini M. Changing the Mediterranean diet: effects on blood pressure. J Hypertens. 1986;4(4):407–12.PubMedCrossRefGoogle Scholar
  83. 83.
    Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D’Armiento M, D'Andrea F, Giugliano D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Ros E, Nunez I, Perez-Heras A, Serra M, Gilabert R, Casals E, Deulofeu R. A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation. 2004;109(13):1609–14.PubMedCrossRefGoogle Scholar
  85. 85.
    Vincent-Baudry S, Defoort C, Gerber M, Bernard MC, Verger P, Helal O, Portugal H, Planells R, Grolier P, Amiot-Carlin MJ, et al. The Medi-RIVAGE study: reduction of cardiovascular disease risk factors after a 3-mo intervention with a Mediterranean-type diet or a low-fat diet. Am J Clin Nutr. 2005;82(5):964–71.PubMedCrossRefGoogle Scholar
  86. 86.
    Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Covas MI, Fiol M, Gomez-Gracia E, Lopez-Sabater MC, Vinyoles E, et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med. 2006;145(1):1–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Rallidis LS, Lekakis J, Kolomvotsou A, Zampelas A, Vamvakou G, Efstathiou S, Dimitriadis G, Raptis SA, Kremastinos DT. Close adherence to a Mediterranean diet improves endothelial function in subjects with abdominal obesity. Am J Clin Nutr. 2009;90(2):263–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Athyros VG, Kakafika AI, Papageorgiou AA, Tziomalos K, Peletidou A, Vosikis C, Karagiannis A, Mikhailidis DP. Effect of a plant stanol ester-containing spread, placebo spread, or Mediterranean diet on estimated cardiovascular risk and lipid, inflammatory and haemostatic factors. Nutr Metab Cardiovasc Dis: NMCD. 2011;21(3):213–21.PubMedCrossRefGoogle Scholar
  89. 89.
    Jones JL, Fernandez ML, McIntosh MS, Najm W, Calle MC, Kalynych C, Vukich C, Barona J, Ackermann D, Kim JE, et al. A Mediterranean-style low-glycemic-load diet improves variables of metabolic syndrome in women, and addition of a phytochemical-rich medical food enhances benefits on lipoprotein metabolism. J Clin Lipidol. 2011;5(3):188–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Damasceno NR, Perez-Heras A, Serra M, Cofan M, Sala-Vila A, Salas-Salvado J, Ros E. Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr Metab Cardiovasc Dis: NMCD. 2011;21(Suppl 1):S14–20.PubMedCrossRefGoogle Scholar
  91. 91.
    Katsarou AL, Vryonis MM, Protogerou AD, Alexopoulos EC, Achimastos A, Papadogiannis D, Chrousos GP, Darviri C. Stress management and dietary counseling in hypertensive patients: a pilot study of additional effect. Prim Health Care Res Dev. 2014;15(1):38–45.PubMedCrossRefGoogle Scholar
  92. 92.
    Domenech M, Roman P, Lapetra J, Garcia de la Corte FJ, Sala-Vila A, de la Torre R, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Lamuela-Raventos RM, et al. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial. Hypertension (Dallas, Tex : 1979). 2014;64(1):69–76.PubMedCrossRefGoogle Scholar
  93. 93.
    Davis CR, Hodgson JM, Woodman R, Bryan J, Wilson C, Murphy KJ. A Mediterranean diet lowers blood pressure and improves endothelial function: results from the MedLey randomized intervention trial. Am J Clin Nutr. 2017;105(6):1305–13.PubMedGoogle Scholar
  94. 94.
    Toledo E, Hu FB, Estruch R, Buil-Cosiales P, Corella D, Salas-Salvado J, Covas MI, Aros F, Gomez-Gracia E, Fiol M, et al. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial. BMC Med. 2013;11:207.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Estruch R. PREDIMED Study Investigators: primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.PubMedCrossRefGoogle Scholar
  96. 96.
    Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • K. Dimitriadis
    • 1
  • C. Filippou
    • 1
  • C. Tsioufis
    • 1
  1. 1.Clinical Dietician-Nutritionist. First Cardiology Clinic, Hippokration Hospital, University of AthensAthensGreece

Personalised recommendations