Arterial Hypertension: What Is the Optimal Goal of Treatment?

  • Emmanuel A. Andreadis
  • Charalampia V. Geladari


Landmark clinical trials have proved that the use of antihypertensive drugs reduces the risk of cardiovascular events occurrence, including incident stroke, myocardial infarction and heart failure. In contrast to the past, when hypertension was considered essential for the perfusion of vital organs, the benefit of lowering blood pressure levels is considered now invaluable, especially among high risk populations. However, the optimal blood pressure goal is still debated. This chapter focuses primarily on milestone studies and on updated evidence-based clinical HTN guidelines. More specifically, it reviews the MRC,the HDFP,the HOT, the SPRINT, the ACCORD and the HOPE-3 studies, and discusses the suggested optimal BP goals derived from these trials. It also focuses on interesting meta-analyses stratifying the different trials according to the BP levels achieved by active treatment.


Hypertension Landmark studies Systolic blood pressure HDFP MRC HOT SPRINT HOPE-3 JNC guidelines JAMA guidelines 


  1. 1.
    Roguin A. Scipione Riva-Rocci and the men behind the mercury sphygmomanometer. Int J Clin Pract. 2006;60:73–9.CrossRefGoogle Scholar
  2. 2.
    Korner PI. Essential hypertension and its causes: neural and non-neural mechanisms. Oxford/New York: Oxford University Press. ISBN 978-0-19-535740-0.
  3. 3.
    Rossi GP. The challenges of arterial hypertension. Front Cardiovasc Med. 2015;2:2.CrossRefGoogle Scholar
  4. 4.
    Chrysant SG. Current status of aggressive blood pressure control. World J Cardiol. 2011;3:65–71.CrossRefGoogle Scholar
  5. 5.
    White PD. Heart disease. 3rd ed. New York: MacMillan; 1944. Zanchetti A. Hypertension: past, present, and future. Rev Fed Arg Cardiol. 2015;44.Google Scholar
  6. 6.
    Bishop T, Figueredo VM. Hypertensive therapy: attacking the renin-angiotensin system. West J Med. 2001;2:119–24.CrossRefGoogle Scholar
  7. 7.
    Bumgarner J. The health of the presidents: the 41 United States presidents through 1993 from a physician’s point of view. Jefferson: McFarland & Company, Inc.; 1994.Google Scholar
  8. 8.
    Deppisch LM. The White House physician: a history from Washington to George W. Bush. Jefferson: McFarland & Company; 2007.Google Scholar
  9. 9.
    Evans H. The hidden campaign: FDR’s health and the 1944 election. Armonk: M.E. Sharpe; 2002.Google Scholar
  10. 10.
    Fye WB. Caring for the heart: Mayo Clinic and the rise of specialization. Oxford: Oxford University Press; 2015.Google Scholar
  11. 11.
    Freis ED. Reminiscences of the Veterans Administration trial of the treatment of hypertension. Hypertension. 1990;16(4):472–5.CrossRefGoogle Scholar
  12. 12.
    Kannel WB, Wolf PA, Veter J, McNamara PM. Epidemiologic assessment of the role of blood pressure in stroke. JAMA. 1970;214:301–10.CrossRefGoogle Scholar
  13. 13.
    Kannel WB, Schwartz MJ, McNamara PM. Blood pressure and risk of coronary heart disease: the Framingham study. Dis Chest. 1969;56:43–52.CrossRefGoogle Scholar
  14. 14.
    Andreadis EA. Hypertension: a growing threat. In: Andreadis EA, editor. Hypertension and cardiovascular disease. Cham: Springer Nature; 2016. p. 1–17.CrossRefGoogle Scholar
  15. 15.
    WHO. Global status report on noncommunicable diseases 2014. World Health Organization, Geneva; 2015.Google Scholar
  16. 16.
    Chockalingam A, Campbell NR, Fodor JG. Worldwide epidemic of hypertension. Can J Cardiol. 2006;22:553–5.CrossRefGoogle Scholar
  17. 17.
    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.CrossRefGoogle Scholar
  18. 18.
    O’Donnell MJ, Xavier D, Lio L, Zhang H, Chin SL, Rao-Melacin P, et al. Risk factors for ischemic and intracerebral hemorrhage stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376:112–23.CrossRefGoogle Scholar
  19. 19.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study); case-control study. Lancet. 2004;364:937–52.CrossRefGoogle Scholar
  20. 20.
    Botdorf J, Chaudhary K, Whaley-Connell A. Hypertension in cardiovascular and kidney disease. Cardiorenal Med. 2011;1:183–92.CrossRefGoogle Scholar
  21. 21.
    Murabito JM, D’Agostino RB, Silbershtz H, Wilson WF. Intermittent claudication: a risk profile from the Framingham Heart Study. Circulation. 1997;96:44–9.CrossRefGoogle Scholar
  22. 22.
    World Health Organization. A global brief on hypertension: silent killer, global public health crisis 2013. Accessed 31 Aug 2014.
  23. 23.
    Forouzanfar MH, Liu P, Roth GA, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317:165–82.CrossRefGoogle Scholar
  24. 24.
    Bakris GL, Frohlich ED. An overview of four decades of experience. JACC. 1989;7:1595–608.CrossRefGoogle Scholar
  25. 25.
    Rutan GH, McDonald RH, Kuller LH. A historical perspective of elevated systolic vs diastolic blood pressure from an epidemiological and clinical trial viewpoint. J Clin Epidemiol. 1989;7:663–73.CrossRefGoogle Scholar
  26. 26.
    MRC Trial of treatment of mild Hypertension: principal results. Medical Research Council Working Party. Br Med J. 1985;291:97–104.Google Scholar
  27. 27.
    Zhang X, Fan F, Huo Y, Xu X. Identifying the optimal blood pressure target for ideal health. J Transl Intern Med. 2016;4:1–6.CrossRefGoogle Scholar
  28. 28.
    Hypertension Detection and Follow-Up Program Cooperative Group. Five-year findings of the hypertension detection and follow-up program. I. Reduction in mortality of persons with high blood pressure, including mild hypertension. JAMA. 1979;242:2562–71.CrossRefGoogle Scholar
  29. 29.
    Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity and hypertension: results in patients with diastolic pressures averaging 115 through 129 millimeters of mercury. JAMA. 1967;202:1028–34.CrossRefGoogle Scholar
  30. 30.
    Veterans Administration Cooperative Study Group on Antihypertensive Agents. Effects of treatment on morbidity and hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 millimeters of mercury. JAMA. 1970;213:1143–52.CrossRefGoogle Scholar
  31. 31.
    Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet. 1998;351:1755–62.CrossRefGoogle Scholar
  32. 32.
    Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension. J Hypertens. 2013;31:1281–357.CrossRefGoogle Scholar
  33. 33.
    James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eight Joint National Committee (JNC 8). JAMA. 2014;311:507–20.CrossRefGoogle Scholar
  34. 34.
    Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.Google Scholar
  35. 35.
    Kjeldsen SE, Mancia G. Unobserved automated office blood pressure measurement in the systolic blood pressure intervention trial (SPRINT): systolic blood pressure treatment target remains below 140 mmHg. Eur Heart J Cardiovasc Pharmacother. 2016;2:79–80.CrossRefGoogle Scholar
  36. 36.
    Parati G, Ochoa JE, Bilo G, Zanchetti A. SPRINT blood pressure: sprinting back to Smirk's basal blood pressure? Hypertension. 2017;69:15–9.CrossRefGoogle Scholar
  37. 37.
    Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.CrossRefGoogle Scholar
  38. 38.
    Bangalore S, Toklu B, Gianos E, Schwartzbard A, Weintraub H, Ogedegbe G, et al. Optimal systolic blood pressure target after SPRINT: insights from a network meta-analysis of randomized trials. Am J Med. 2017;130(6):707–719 e8.CrossRefGoogle Scholar
  39. 39.
    Zanchetti A, Liu L, Mancia G, Parati G, Grassia G, MarcoStramba-Badialea M, et al. Continuation of the ESH-CHL-SHOT trial after publication of the SPRINT: rationale for further study on blood pressure targets of antihypertensive treatment after stroke. J Hypertens. 2016;34:393–5.CrossRefGoogle Scholar
  40. 40.
    Williamson JD, Supiano MA, Applegate WB, Berlowitz DR, Campbell RC, Chertow GM, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years. JAMA. 2016;315:2673–82.CrossRefGoogle Scholar
  41. 41.
    Cushman WC, Evans GW, Byington RP, Goff DC, Grimm RH, Cutler JA. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.CrossRefGoogle Scholar
  42. 42.
    Yusuf S, Lonn E, Pais P, Bosch J, Lopez-Jaramillo P, Zhu J, et al. Blood-pressure and cholesterol lowering in persons without cardiovascular disease. N Engl J Med. 2016;374:2032–43.CrossRefGoogle Scholar
  43. 43.
    Chobanian AV. Hypertension in 2017-what is the right target? JAMA. 2017;317:579–80.CrossRefGoogle Scholar
  44. 44.
    Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 7. Effects of more versus less intensive blood pressure lowering and different achieved blood pressure levels-updated overview and meta-analyses of randomized trials. J Hypertens. 2016;34:613–22.CrossRefGoogle Scholar
  45. 45.
    Whelton PK, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and Management of High Blood Pressure in adults. JACC. 2018;71:e127–248. Scholar
  46. 46.
    Handler J. The importance of accurate blood pressure measurement. Perm J. 2009;13:51–4.CrossRefGoogle Scholar
  47. 47.
    Bakris G, Sorrentino M. Redefining hypertension — assessing the new blood-pressure guidelines. NEJM. 378:497–9. Scholar
  48. 48.
    Moise N, Huang C, Rodgers A, Kohli-Lynch CN, Tzong KY, Coxson PG, et al. Comparative cost-effectiveness of conservative or intensive blood pressure treatment guidelines in adults aged 35–74 years the cardiovascular disease policy model. Hypertension. 2016;68:88–96.CrossRefGoogle Scholar
  49. 49.
    Freis ED. Hypertension treatment: contributions and comments on challenges. J Clin Hypertens. 2004;1:45–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Emmanuel A. Andreadis
    • 1
    • 2
  • Charalampia V. Geladari
    • 2
    • 3
  1. 1.Hypertension and Cardiovascular Disease Prevention Center, Evangelismos General HospitalAthensGreece
  2. 2.Fourth Internal Medicine DepartmentEvangelismos State General HospitalAthensGreece
  3. 3.Department of Medicine, Division of CardiologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations