Lignocellulosic Materials: Sources and Processing Technologies

  • Lina Fernanda Ballesteros
  • Michele Michelin
  • António Augusto Vicente
  • José António Teixeira
  • Miguel Ângelo CerqueiraEmail author
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Lignocellulosic materials (LCMs) are one of the most promising feedstock for several biotechnological purposes. However, these LCMs are highly complex and present a robust structure of difficult access. For the valorization of each fraction of LCMs, a pre-treatment step is necessary in order to alter and/or remove the surrounding matrix of lignin and hemicellulose and increase the cellulose accessibility. Each pre-treatment has a specific effect on the LCM components and generally more than one pre-treatment step is necessary to obtain the fractions. This chapter primarily covers the definition of LCMs, their composition and varied sources. Subsequently, it is presented their structure, and the advantages and disadvantages of the different pre-treatment methods. Furthermore, a section with examples of successful processing technologies and valorization of each LCM component using different pre-treatment technologies is presented.


  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979CrossRefGoogle Scholar
  2. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  3. Amiri H, Karimi K (2016) Integration of autohydrolysis and organosolv delignification for efficient acetone, butanol, and ethanol production and lignin recovery. Ind Eng Chem Res 55(17):4836–4845CrossRefGoogle Scholar
  4. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci. 7(2):163–173CrossRefGoogle Scholar
  5. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage 52(2):858–875CrossRefGoogle Scholar
  6. Boeriu CG, Bravo D, Gosselink RJA, Van-Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crop Prod 20(2):205–218CrossRefGoogle Scholar
  7. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169CrossRefGoogle Scholar
  8. Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52(10):3563–3580CrossRefGoogle Scholar
  9. Cybulska I, Brudecki G, Lei H (2013) Hydrothermal pretreatment of lignocellulosic biomass. In: Gu T (ed) Green biomass pretreatment for biofuels production. Springer, Netherlands, Dordrecht, pp 87–106CrossRefGoogle Scholar
  10. Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102(2):1988–1997CrossRefPubMedGoogle Scholar
  11. Diaz AB, Moretti MMdS, Bezerra-Bussoli C, Carreira Nunes CdC, Blandino A, da Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323CrossRefPubMedGoogle Scholar
  12. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276CrossRefGoogle Scholar
  13. El Hage R, Chrusciel L, Desharnais L, Brosse N (2010) Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification. Bioresour Technol 101(23):9321–9329CrossRefPubMedGoogle Scholar
  14. Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B (2014) Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. Bioresources 9(2):3660–3687CrossRefGoogle Scholar
  15. Fonseca Silva TC, Habibi Y, Colodette JL, Lucia LA (2011) The influence of the chemical and structural features of xylan on the physical properties of its derived hydrogels. Soft Matter 7(3):1090–1099CrossRefGoogle Scholar
  16. Gabrielii I, Gatenholm P, Glasser WG, Jain RK, Kenne L (2000) Separation, characterization and hydrogel-formation of hemicellulose from aspen wood. Carbohyd Polym 43(4):367–374CrossRefGoogle Scholar
  17. Garrote G, Falqué E, Dominguez H, Parajó JC (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98(10):1951–1957CrossRefPubMedGoogle Scholar
  18. George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800CrossRefPubMedGoogle Scholar
  20. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, Heidelberg, pp 21–38CrossRefGoogle Scholar
  22. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505CrossRefGoogle Scholar
  23. Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohyd Polym 61(3):266–275CrossRefGoogle Scholar
  24. Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromol 9(7):2042–2047CrossRefGoogle Scholar
  25. Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C, Clegg F, Aucejok S (2012) Renewable fibers and bio-based materials for packaging applications—A review of recent developments. Bioresources 7(2):2506–2552CrossRefGoogle Scholar
  26. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99CrossRefGoogle Scholar
  27. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  28. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  29. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRefGoogle Scholar
  30. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust 38(4):449–467CrossRefGoogle Scholar
  31. Loqué D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161CrossRefPubMedGoogle Scholar
  32. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1):39–48CrossRefGoogle Scholar
  33. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust 38(4):522–550CrossRefGoogle Scholar
  34. Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM (2014) Cellulose from lignocellulosic waste. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides: bioactivity and biotechnology. Springer International Publishing, Switzeland, pp 1–33Google Scholar
  35. Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869CrossRefPubMedGoogle Scholar
  36. Michelin M, Ximenes E, Polizeli MdL, Ladisch MR (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278CrossRefPubMedGoogle Scholar
  37. Mikkonen KS, Heikkilä MI, Helén H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohyd Polym 79(4):1107–1112CrossRefGoogle Scholar
  38. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993CrossRefPubMedGoogle Scholar
  40. Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B 75:176–200CrossRefGoogle Scholar
  41. Normark M, Winestrand S, Lestander TA, Jönsson LJ (2014) Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine. BMC Biotechnol 14(1):20CrossRefPubMedPubMedCentralGoogle Scholar
  42. Peral C (2016) Biomass pretreatment strategies (technologies, environmental performance, economic considerations, industrial implementation). In: Poltronieri P, D’Urso O (eds) Biotransformation of agricultural waste and by-products. Elsevier, pp 125–160CrossRefGoogle Scholar
  43. Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenergy 58:390–405CrossRefGoogle Scholar
  44. Quitain AT, Sasaki M, Goto M (2013) Microwave-based pretreatment for efficient biomass-to-biofuel conversion. In: Fang Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, Berlin, Heidelberg, pp 117–130CrossRefGoogle Scholar
  45. Romaní A, Garrote G, López F, Parajó JC (2011) Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresour Technol 102(10):5896–5904CrossRefPubMedGoogle Scholar
  46. Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491CrossRefGoogle Scholar
  47. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefPubMedGoogle Scholar
  48. Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101(13):4914–4918CrossRefPubMedGoogle Scholar
  49. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  50. Smook GA (2002) Handbook for pulp and paper technologists. Angus Wilde Publications Inc., Vancouver, BCGoogle Scholar
  51. Sorek N, Yeats TH, Szemenyei H, Youngs H, Somerville CR (2014) The implications of lignocellulosic biomass chemical composition for the production of advanced biofuels. Bioscience 64(3):192–201CrossRefGoogle Scholar
  52. SriBala G, Chennuru R, Mahapatra S, Vinu R (2016) Effect of alkaline ultrasonic pretreatment on crystalline morphology and enzymatic hydrolysis of cellulose. Cellulose 23(3):1725–1740CrossRefGoogle Scholar
  53. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefPubMedGoogle Scholar
  54. Ten E, Vermerris W (2013) Functionalized polymers from lignocellulosic biomass: state of the art. Polymers 5(2):600–642CrossRefGoogle Scholar
  55. Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687CrossRefPubMedGoogle Scholar
  56. Velmurugan R, Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299CrossRefPubMedGoogle Scholar
  57. Wang H, Frits PdV, Jin Y (2009) A win-win technique of stabilizing sand dune and purifying paper mill black-liquor. J Environ Sci 21(4):488–493CrossRefGoogle Scholar
  58. Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66CrossRefPubMedGoogle Scholar
  59. Yan J, Hu Z, Pu Y, Brummer EC, Ragauskas AJ (2010) Chemical compositions of four switchgrass populations. Biomass Bioenerg 34(1):48–53CrossRefGoogle Scholar
  60. Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101(24):9792–9796CrossRefPubMedGoogle Scholar
  61. Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824CrossRefPubMedGoogle Scholar
  62. Zhang T, Kumar R, Wyman CE (2013) Sugar yields from dilute oxalic acid pretreatment of maple wood compared to those with other dilute acids and hot water. Carbohyd Polym 92(1):334–344CrossRefGoogle Scholar
  63. Zhou H, Zhu J, Gleisner R, Qiu X, Horn E (2015) High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot scale. Front Energ Res 3:16CrossRefGoogle Scholar
  64. Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F, Wang C, Jin S (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94(3):437–442CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Lina Fernanda Ballesteros
    • 1
  • Michele Michelin
    • 2
  • António Augusto Vicente
    • 3
  • José António Teixeira
    • 4
  • Miguel Ângelo Cerqueira
    • 5
    Email author
  1. 1.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  3. 3.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  4. 4.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  5. 5.International Iberian Nanotechnology LaboratoryBragaPortugal

Personalised recommendations