Liver Assist Systems for Bridging to Transplantation: Devices and Concepts

  • Nathanael RaschzokEmail author
  • Karl Herbert Hillebrandt
  • Igor M. Sauer


Liver transplantation continues to be the gold standard for the treatment of patients with acute liver failure, chronic liver diseases, and in the early stages of hepatocellular carcinoma. However, the success of liver transplantation is increasingly limited by the lack of suitable donor organs. Liver support systems have been developed in order to solve this issue by providing temporary support for the failing liver, thereby either helping to bridge the time until a suitable liver graft becomes available, or giving the patient’s liver a chance to regenerate. We here discuss the conceptual background of the devices and practices currently in use and under development for liver assist: I. artificial und bioartificial liver support devices, II. hepatocyte transplantation, and III. the bioengineered liver. Liver support devices and hepatocyte transplantation have already been clinically evaluated. Yet, the bioengineered liver is still a challenge although also a goal for the near future. Not all the systems described are ready to apply in clinical routines.


Liver transplantation Liver support Liver assist Bioartificial Hepatocyte transplantation Bioartificial liver 


  1. 1.
    Alqahtani SA. Update in liver transplantation. Curr Opin Gastroenterol. 2012;28(3):230–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Jahresbericht Organspende und Transplantation in Deutschland 2016. Deutsche Stiftung Organtransplantation. p. 82.Google Scholar
  3. 3.
  4. 4.
    Pais R, Barritt AS 4th, Calmus Y, Scatton O, Runge T, Lebray P, Poynard T, Ratziu V, Conti FJ. NAFLD and liver transplantation: current burden and expected challenges. J Hepatol. 2016;65(6):1245–57. Epub 2016 Jul 30.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Study on the uptake and impact of the EU Action Plan on organ donation and transplantation (2009–2015) in the EU Member States. European Commission. 2017. pp. 5–7.Google Scholar
  6. 6.
    Council of Europe. Newsletter Transplant. International figures on donation and transplantation 2015. 2016. p. 16, pp. 43–45.Google Scholar
  7. 7.
    Council of Europe. Trafficking in organs, tissues and cells and trafficking in human beings for the purpose of the removal of organs. 2009.Google Scholar
  8. 8.
    Kamath PS1, Kim WR, Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology. 2007;45(3):797–805.PubMedCrossRefGoogle Scholar
  9. 9.
    Tacke F, Kroy DC, Barreiros AP, Neumann UP. Liver transplantation in Germany. Liver Transpl. 2016;22(8):1136–42. Scholar
  10. 10.
    Otto G. Liver transplantation: an appraisal of the present situation. Dig Dis. 2013;31(1):164–9. Epub 2013 Jun 17.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitzner SR. Extracorporeal liver support-albumin dialysis with the Molecular Adsorbent Recirculating System (MARS). Ann Hepatol. 2011;10:21–8.Google Scholar
  12. 12.
    Sauer IM, Goetz M, Steffen I, et al. In vitro comparison of the molecular adsorbent recirculation system (MARS) and single-pass albumin dialysis (SPAD). Hepatology. 2004;39:1408–144.PubMedCrossRefGoogle Scholar
  13. 13.
    Rifai K. Fractionated plasma separation and adsorption: current practice and future options. Liver Int. 2011;31:13–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Al-Chalabi A, et al. Evaluation of the Hepa Wash(R) treatment in pigs with acute liver failure. BMC Gastroenterol. 2013;13:83.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Demetriou AA, Brown RS Jr, Busuttil RW, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–70.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sussman NL, Gislason GT, Conlin CA, et al. The Hepatix extracorporeal liver assist device: initial clinical experience. Artif Organs. 1994;18:390–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Sauer IM, Kardassis D, Zeillinger K, Pascher A, Gruenwald A, Pless G, Irgang M, Kraemer M, Puhl G, Frank J, Müller AR, Steinmüller T, Denner J, Neuhaus P, Gerlach JC. Clinical extracorporeal hybrid liver support–phase I study with primary porcine liver cells. Xenotransplantation. 2003;10(5):460–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Sauer IM, Zeilinger K, Pless G, et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis – treatment of a patient with primary graft non-function. J Hepatol. 2003;39:649–53.PubMedCrossRefGoogle Scholar
  19. 19.
    van de Kerkhove MP, Di Florio E, Scuderi V, et al. Phase I clinical trial with the AMC-bioartificial liver. Int J Artif Organs. 2002;25:950–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Olson JC, Karvellas CJ. Critical care management of the cirrhotic patient awaiting liver transplant in the intensive care unit. Liver Transpl. 2017;23:1465.PubMedCrossRefGoogle Scholar
  21. 21.
    Mitzner SR, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: results of a prospective, randomized, controlled clinical trial. Liver Transpl Off Publ Am Assoc Study Liver Dis Int Liver Transpl Soc. 2000;6:277–86.Google Scholar
  22. 22.
    Heemann U, et al. Albumin dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;36:949–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Sen S, et al. Pathophysiological effects of albumin dialysis in acute-on-chronic liver failure: a randomized controlled study. Liver Transpl Off Publ Am Assoc Study Liver Dis Int Liver Transpl Soc. 2004;10:1109–19.Google Scholar
  24. 24.
    Hassanein TI, et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology. 2007;46:1853–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Banares R, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology. 2013;57:1153–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Kribben A, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology. 2012;142:782–789.e783.PubMedCrossRefGoogle Scholar
  27. 27.
    Demetriou AA, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–7. ; discussion 667–70.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stutchfield BM, Simpson K, Wigmore SJ. Systematic review and meta-analysis of survival following extracorporeal liver support. Br J Surg. 2011;98:623–31.PubMedCrossRefGoogle Scholar
  29. 29.
    Dhawan A, Puppi J, Hughes RD, Mitry RR. Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol. 2010;7(5):288–98. ** of considerable interest, as this article reviews the current state of clinical LCT.PubMedCrossRefGoogle Scholar
  30. 30.
    Dhawan A, Strom SC, Sokal E, Fox IJ. Human hepatocyte transplantation. Methods Mol Biol. 2010;640:525–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Hughes RD, Mitry RR, Dhawan A. Current status of hepatocyte transplantation. Transplantation. 2012;93(4):342–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Strom SC, Fisher RA, Rubinstein WS, et al. Transplantation of human hepatocytes. Transplant Proc. 1997;29(4):2103–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Horslen SP, McCowan TC, Goertzen TC, et al. Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics. 2003;111(6 Pt 1):1262–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Stéphenne X, Najimi M, Smets F, Reding R, de Ville de Goyet J, Sokal EM. Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am J Transplant. 2005;5(8):2058–61.PubMedCrossRefGoogle Scholar
  35. 35.
    Puppi J, Tan N, Mitry RR, et al. Hepatocyte transplantation followed by auxiliary liver transplantation – a novel treatment for ornithine transcarbamylase deficiency. Am J Transplant. 2008;8(2):452–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Meyburg J, Das AM, Hoerster F, et al. One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation. 2009;87(5):636–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Stéphenne X, Najimi M, Sibille C, Nassogne MC, Smets F, Sokal EM. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology. 2006;130(4):1317–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Dhawan A, Mitry RR, Hughes RD. Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis. 2006;29(2–3):431–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Allen KJ, Mifsud NA, Williamson R, Bertolino P, Hardikar W. Cell-mediated rejection results in allograft loss after liver cell transplantation. Liver Transpl. 2008;14(5):688–94.PubMedCrossRefGoogle Scholar
  40. 40.
    Soltys KA, Soto-Gutiérrez A, Nagaya M, et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J Hepatol. 2010;53(4):769–74.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Schneider A, Attaran M, Meier PN, et al. Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation. 2006;82(8):1115–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Khan AA, Habeeb A, Parveen N, et al. Peritoneal transplantation of human fetal hepatocytes for the treatment of acute fatty liver of pregnancy: a case report. Trop Gastroenterol. 2004;25(3):141–3.PubMedGoogle Scholar
  43. 43.
    Baccarani U, Adani GL, Sanna A, et al. Portal vein thrombosis after intraportal hepatocytes transplantation in a liver transplant recipient. Transpl Int. 2005;18(6):750–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Strom SC, Fisher RA, Thompson MT, et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation. 1997;63(4):559–69.PubMedCrossRefGoogle Scholar
  45. 45.
    Jorns C, Nowak G, Nemeth A, Zemack H, Mörk LM, Johansson H, Gramignoli R, Watanabe M, Karadagi A, Alheim M, Hauzenberger D, van Dijk R, Bosma PJ, Ebbesen F, Szakos A, Fischler B, Strom S, Ellis E, Ericzon BG. De novo donor-specific HLA antibody formation in two patients with Crigler-Najjar syndrome type I following human hepatocyte transplantation with partial hepatectomy preconditioning. Am J Transplant. 2016;16(3):1021–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Soltys KA, Setoyama K, Tafaleng EN, Soto Gutiérrez A, Fong J, Fukumitsu K, Nishikawa T, Nagaya M, Sada R, Haberman K, Gramignoli R, Dorko K, Tahan V, Dreyzin A, Baskin K, Crowley JJ, Quader MA, Deutsch M, Ashokkumar C, Shneider BL, Squires RH, Ranganathan S, Reyes-Mugica M, Dobrowolski SF, Mazariegos G, Elango R, Stolz DB, Strom SC, Vockley G, Roy-Chowdhury J, Cascalho M, Guha C, Sindhi R, Platt JL, Fox IJ. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J Hepatol. 2017;66(5):987–1000.PubMedCrossRefGoogle Scholar
  47. 47.
    Touboul T, Hannan NR, Corbineau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51(5):1754–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Espejel S, Roll GR, McLaughlin KJ, et al. Induced pluripotent stem cell-derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. J Clin Invest. 2010;120(9):3120–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Struecker B, Raschzok N, Sauer IM. Liver support strategies: cutting-edge technologies. Nat Rev Gastroenterol Hepatol. 2014;11(3):166–76.PubMedCrossRefGoogle Scholar
  50. 50.
    Yee ML, Tan HH. Use of everolimus in liver transplantation. World J Hepatol. 2017;9(23):990–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhou J, Hu Z, Zhang Q, Li Z, Xiang J, Yan S, Wu J, Zhang M, Zheng S. Spectrum of De novo cancers and predictors in liver transplantation: analysis of the scientific registry of transplant recipients database. PLoS One. 2016;11(5):e0155179. eCollection 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Faulk DM, Wildemann JD, Badylak SF. Decellularization and cell seeding of whole liver biologic scaffolds composed of extracellular matrix. J Clin Exp Hepatol. 2015;5(1):69–80.PubMedCrossRefGoogle Scholar
  53. 53.
    Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med. 2010;16(7):814–20.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Londono R, Badylak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng. 2015;43(3):577–92.PubMedCrossRefGoogle Scholar
  55. 55.
    Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng. 2014;42(7):1517–27.PubMedCrossRefGoogle Scholar
  56. 56.
    Alexandrova K, Griesel C, Barthold M, Heuft HG, Ott M, Winkler M, Schrem H, Manns MP, Bredehornsp T, Net M, MMI V, Kafert-Kasting S, Arseniev L. Large-scale isolation of human hepatocytes for therapeutic application. Cell Transplant. 2005;14(10):845–53.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhou P, Lessa N, Estrada DC. Decellularized liver matrix as a carrier for the transplantation of human fetal and primary hepatocytes in mice. Liver Transpl. 2011;17(4):418–27.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Struecker B, Butter A, Hillebrandt K, Polenz D, Reutzel-Selke A, Tang P, Lippert S, Leder A, Rohn S, Geisel D, Denecke T, Aliyev K, Jöhrens K, Raschzok N, Neuhaus P, Pratschke J, Sauer IM. Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. 2017;11(2):531–41.PubMedCrossRefGoogle Scholar
  59. 59.
    Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang H, Reing J, Gramignoli R, Komori J, Ross M, Nagaya M, Lagasse E, Stolz D, Strom SC, Fox IJ, Badylak SF. A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods. 2011;17(6):677–86. Epub 2011 Apr 20.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53(2):604–17.PubMedCrossRefGoogle Scholar
  61. 61.
    Struecker B, Hillebrandt KH, Voitl R, Butter A, Schmuck RB, Reutzel-Selke A, Geisel D, Joehrens K, Pickerodt PA, Raschzok N, Puhl G, Neuhaus P, Pratschke J, Sauer IM. Porcine liver decellularization under oscillating pressure conditions: a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods. 2015;21(3):303–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C, Holley LS, Gauthier PK. Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res. 2012;173(1):e11–25.PubMedCrossRefGoogle Scholar
  63. 63.
    Verstegen MMA, Willemse J, van den Hoek S, Kremers GJ, Luider TM, van Huizen NA, Willemssen FEJA, Metselaar HJ, IJzermans JNM, van der Laan LJW, de Jonge J. Decellularization of whole human liver grafts using controlled perfusion for transplantable organ bioscaffolds. Stem Cells Dev. 2017;26(18):1304–15. Epub 2017 Jul 31.PubMedCrossRefGoogle Scholar
  64. 64.
    Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong T, Al-Akkad W, Longato L, Brown D, Maghsoudlou P, Dhillon AP, Fuller B, Davidson B, Moore K, Dhar D, De Coppi P, Malago M, Pinzani M. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep. 2015;5:13079.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Butter A, Aliyev K, Hillebrandt KH, Raschzok N, Kluge M, Seiffert N, Tang P, Napierala H, Muhamma AI, Reutzel-Selke A, Andreou A, Pratschke J, Sauer IM, Struecker B. Evolution of graft morphology and function after recellularization of decellularized rat livers. J Tissue Eng Regen Med. 2018;12(2):e807–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Bao J, Shi Y, Sun H, Yin X, Yang R, Li L, Chen X, Bu H. Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant. 2011;20(5):753–66.PubMedCrossRefGoogle Scholar
  67. 67.
    Hassanein W, Uluer MC, Langford J, Woodall JD, Cimeno A, Dhru U, Werdesheim A, Harrison J, Rivera-Pratt C, Klepfer S, Khalifeh A, Buckingham B, Brazio PS, Parsell D, Klassen C, Drachenberg C, Barth RN, JC LM. Recellularization via the bile duct supports functional allogenic and xenogenic cell growth on a decellularized rat liver scaffold. Organogenesis. 2017;13(1):16–27.PubMedCrossRefGoogle Scholar
  68. 68.
    Collin de l’Hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, Dorko K, Presnell SC, Yagi H, Soto-Gutierrez A. Liver-regenerative transplantation: regrow and reset. Am J Transplant. 2016;16(6):1688–96.PubMedCrossRefGoogle Scholar
  69. 69.
    Hussein KH, Park KM, Kang KS, Woo HM. Heparin-gelatin mixture improves vascular reconstruction efficiency and hepatic function in bioengineered livers. Acta Biomater. 2016;38:82–93.PubMedCrossRefGoogle Scholar
  70. 70.
    Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, Zimmerman C, Clouse C, Zhao W, Shupe TD, Soker S, Yoo JJ, Atala A. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials. 2015;40:72–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhou P, Huang Y, Guo Y, Wang L, Ling C, Guo Q, Wang Y, Zhu S, Fan X, Zhu M, Huang H, Lu Y, Wang Z. Decellularization and Recellularization of rat livers with hepatocytes and endothelial progenitor cells. Artif Organs. 2016;40(3):E25–38.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang Y, Bao J, Wu X, Wu Q, Li Y, Zhou Y, Li L, Bu H. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization. Sci Rep. 2016;6:24779.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bao J, Wu Q, Sun J, Zhou Y, Wang Y, Jiang X, Li L, Shi Y, Bu H. Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep. 2015;5:10756.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE, Am J. Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol. 2013;183(2):558–65.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nathanael Raschzok
    • 1
    Email author
  • Karl Herbert Hillebrandt
    • 1
  • Igor M. Sauer
    • 1
  1. 1.Department of Surgery, Campus Charité Mitte | Campus Virchow-KlinikumExperimental Surgery and Regenerative Medicine, Charité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations