Microbial Fuel Cell Research Using Animal Waste: A Feebly-Explored Area to Others

  • Deepika Jothinathan
  • A. H. Nasrin Fathima
  • Prabhakaran Mylsamy
  • L. Benedict Bruno
  • Venkatraman Sivasankar


Microbial fuel cell is a fast-growing technology and method for the energy recovery from wastewater treatment. The technology is so tempting that still researchers are carrying this out because of its potential benefits and other important resources. This chapter has attempted to focus on the production of energy from various sources such as domestic waste, industrial waste, animal waste and sewage waste. Though there are more sources that are widely exploited in the anodic chamber, usage of animal waste has been limited hitherto. Hence, a brief introduction of animal waste used in MFC in terms of renewable energy has been provided to the readers. The pros and cons of using animal waste have to be kept in mind before using them in the microbial fuel cell.


Animal waste Microbial fuel cell Energy and Sludge 


  1. Adeniran JA, Huberts R, De-Koker JJ, Arotiba OA, Olorundare OF, Van-Zyl E, Du-Plessis SC (2016) Energy generation from domestic wastewater using sandwich dual-chamber microbial fuel cell with mesh current collector cathode. Int J Environ Sci Technol 13(9):2209–2218CrossRefGoogle Scholar
  2. Aelterman P, Rabaey K, Clauwaert P, Verstraete W (2006) Microbial fuel cells for wastewater treatment. Water Sci Technol 54(8):9–15CrossRefGoogle Scholar
  3. Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W (2008) Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour Technol 99:8895–8902CrossRefGoogle Scholar
  4. Ahn Y, Logan BE (2010) Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour Technol 101(2):469–475CrossRefGoogle Scholar
  5. Akman D, Cirik K, Ozdemir S, Ozkaya B, Cinar O (2013) Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Bioresour Technol 149:459–464CrossRefGoogle Scholar
  6. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485CrossRefGoogle Scholar
  7. Antonopoulo G, Stamatelatou K, Beblis S, Lyberatos G (2010) Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochem Eng J 50:10–15CrossRefGoogle Scholar
  8. Burke S, Heathwaite L, Quinn P, Merrett S, Whitehead P, Preedy N, Lerner D, Saul A (2003) Strategic management of non-point source pollution from sewage sludge. Water Sci Technol 47(8):305–310CrossRefGoogle Scholar
  9. Capodaglio AG, Molognoni D, Dallago E, Liberale A, Cella R, Longoni P et al (2013) Microbial fuel cells for direct electrical energy recovery from urban wastewaters. Sci World J 2013:1–8CrossRefGoogle Scholar
  10. Capodaglio AG, Molognoni D, Puig S, Balaguer MD, Colprim J (2015) Role of operating conditions on energetic pathways in a microbial fuel cell. Energy Procedia 74:728–735CrossRefGoogle Scholar
  11. Cercado-Quezada B, Delia ML, Bergel A (2010) Testing various food-industry wastes for electricity production in microbial fuel cell. Bioresour Technol 101:2748–2754CrossRefGoogle Scholar
  12. Cerrillo M, Oliveras J, Viñas M, Bonmatí A (2016) Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems. Bioelectrochemistry 110:69–78CrossRefGoogle Scholar
  13. Chen M, Kim JH, Kishida N, Nishimura O, Sudo R (2004) Enhanced nitrogen removal using C/N load adjustment and real-time control strategy in sequencing batch reactors for swine wastewater treatment. Water Sci Technol 49:309–314CrossRefGoogle Scholar
  14. Chiu HY, Pai TY, Liu MH, Chang CA, Lo FC, Chang TC, Lo HM, Chiang CF, Chao KP, Lo WY, Lo SW (2016) Electricity production from municipal solid waste using microbial fuel cells. Waste Manag Res 34(7):619–629.CrossRefGoogle Scholar
  15. Colombo A, Schievano A, Trasatti SP, Morrone R, D’Antona N, Cristiani P (2017) Signal trends of microbial fuel cells fed with different food-industry residues. Int J Hydrog Energy 19;42(3):1841–1852CrossRefGoogle Scholar
  16. Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrog Energy 35(17):8855–8861CrossRefGoogle Scholar
  17. Cusido JA, Cremades LV, Gonzalez M (2003) Gaseous emissions from ceramics manufactured with urban sewage sludge during firing processes. Waste Manag 23(3):273–280CrossRefGoogle Scholar
  18. Dalvi AD, Mohandas N, Shinde OA, Kininge PT (2011) Microbial fuel cell for production of bioelectricity from whey and biological wastewater. Int J Adv Biotechnol Res 2:263–268Google Scholar
  19. Deepika J, Meignanalakshmi S, Thilagaraj RW (2015) The optimization of parameters for increased electricity production by a microbial fuel cell using rumen fluid. Int J Green Energy 12(4):333–338CrossRefGoogle Scholar
  20. Dentel SK, Strogen B, Sharma A, Chiu P (2004) Direct generation of electricity from sludges and other liquid wastes. In: Proceedings, IWA conference on resources from sludge, Singapore, March 2–3Google Scholar
  21. Donovan C, Dewan A, Peng H, Heo D, Beyenal H (2011) Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. J Power Sources 196(3):1171–1177CrossRefGoogle Scholar
  22. Du ZW, Li HR, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  23. Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473CrossRefGoogle Scholar
  24. Elakkiya E, Matheswaran M (2013) Comparison of anodic metabolisms in bioelectricity production during treatment of dairy wastewater in microbial fuel cell. Bioresour Technol 136:407–412CrossRefGoogle Scholar
  25. Fava F, Totaro G, Diels L, Reis M, Duarte J, Carioca OB, Poggi-Varaldo HM, Ferreira BS (2013) Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol 32(1):100–108CrossRefGoogle Scholar
  26. Fornero JJ, Rosenbaum M, Angenent LT (2010) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 22(7–8):832–843CrossRefGoogle Scholar
  27. Gadhamshetty V, Koratkar N (2012) Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. Nano Energy 1(1):35CrossRefGoogle Scholar
  28. Gelegenis J, Georgakakis D, Angelidaki I, Mavris V (2007) Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew Energy 32:2147–2160CrossRefGoogle Scholar
  29. Goud RK, Babu PS, Mohan SV (2011) Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrog Energy 36:6210e8CrossRefGoogle Scholar
  30. Guzman JJ, Cooke KG, Gay MO, Radachowsky SE, Girguis PR, Chiu MA (2010) Benthic microbial fuel cells: Long-term power sources for wireless marine sensor networks. In: Sensors, and command, control, communications, and intelligence (C3I) technologies for homeland security and homeland defense IX, vol. 7666. International Society for Optics and Photonics, p 76662MGoogle Scholar
  31. Hamamoto K, Miyahara M, Kouzuma A, Matsumoto A, Yoda M, Ishiguro T, Watanabe K (2016) Evaluation of microbial fuel cells for electricity generation from oil-contaminated wastewater. J Biosci Bioeng 122(5):589–593CrossRefGoogle Scholar
  32. Hamelers HM, Heijne A, Sleutels TJA, Jeremiasse A, Strik DBTB, Buisman CN (2010) New applications and performance of bioelectrochemical systems. Appl Microbiol Biotechnol 85:1673–1685CrossRefGoogle Scholar
  33. Hobson PN, Stewart CS (1997) The rumen microbial ecosystem. Blackie Academic & Professional, New York, pp 10–72CrossRefGoogle Scholar
  34. Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111:297–309CrossRefGoogle Scholar
  35. Ieropoulos I, Winfield J, Greenman J (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol 101:3520–3525CrossRefGoogle Scholar
  36. Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100(2):717–723CrossRefGoogle Scholar
  37. Jafary T, Rahimnejad M, Ghoreyshi AA, Najafpour G, Hghparast F, Daud WRW (2013) Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers Manag 75:256–262CrossRefGoogle Scholar
  38. Jiang J, Zhao Q, Zhang J, Zhang G, Lee DJ (2009) Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol 100(23):5808–5812CrossRefGoogle Scholar
  39. Kassongo J, Togo CA (2010) The potential of whey in driving microbial fuel cells: a dual prospect of energy recovery and remediation. Afr J Biotechnol 9(46):7885–7890CrossRefGoogle Scholar
  40. Katuri KP, Enright AM, O’Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry 87:164–171CrossRefGoogle Scholar
  41. Kaur A, Boghani HC, Michie I, Dinsdale RM, Guwy AJ, Premier GC (2014) Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresour Technol 173:75–81CrossRefGoogle Scholar
  42. Kim JH, Chen M, Kishida N, Sudo R (2004) Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res 38:3340–3348CrossRefGoogle Scholar
  43. Kim JR, Dec J, Bruns MA, Logan BE (2008a) Removal of odors from swine wastewater by using microbial fuel cells. Appl Environ Microbiol 74(8):2540–2543CrossRefGoogle Scholar
  44. Kim JR, Zuo Y, Regan JM, Logan BE (2008b) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol Bioeng 99(5):1120–1127CrossRefGoogle Scholar
  45. Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens Bioelectron 43:461–475CrossRefGoogle Scholar
  46. Lasik M, Nowak J, Krzywonos M, Cibis E (2010) Impact of batch, repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater. Bioresour Technol 101:3444–3451CrossRefGoogle Scholar
  47. Lee JW, Cha HY, Park KY, Song KG, Ahn KH (2005) Operational strategies for an activated sludge process in conjunction with ozone oxidation for zero excess sludge production during winter season. Water Res 39(7):1199–1204CrossRefGoogle Scholar
  48. Lefebvre O, Tan Z, Shen Y, Ng HY (2013) Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material. Bioresour Technol 127:158–164CrossRefGoogle Scholar
  49. Levis JW, Barlaz MA (2011) What is the most environmentally beneficial way to treat commercial food waste? Environ Sci Technol 45(17):7438–7444CrossRefGoogle Scholar
  50. Li WW, Sheng GP, Liu XW, Cai PJ, Sun M, Xiao X, Wang YK, Tong ZH, Dong F, Yu HQ (2011) Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens Bioelectron 26(10):3987–3992CrossRefGoogle Scholar
  51. Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896CrossRefGoogle Scholar
  52. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRefGoogle Scholar
  53. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690CrossRefGoogle Scholar
  54. Logan BE, Regan JM (2006) Microbial fuel cells-challenges and applications. Environ Sci Technol 40(17):5172–5180CrossRefGoogle Scholar
  55. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508CrossRefGoogle Scholar
  56. Luo A, Zhu J, Ndegwa PM (2002) Removal of carbon, nitrogen, and phosphorus in pig manure by continuous and intermittent aeration at low redox potentials. Biosyst Eng 82:209–215CrossRefGoogle Scholar
  57. Mardanpour MM, Esfahany MN, Behzad T, Sedaqatvand R (2012) Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment. Biosens Bioelectron 38(1):264–269CrossRefGoogle Scholar
  58. Min B, Kim J, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39(20):4961–4968CrossRefGoogle Scholar
  59. Molognoni D, Puig S, Balaguer MD, Capodaglio AG, Callegari A, Colprim J (2016) Multiparametric control for enhanced biofilm selection in microbial fuel cells. J Chem Technol Biotechnol 91(6):1720–1727CrossRefGoogle Scholar
  60. Moqsud MA, Omine K, Yasufuku N, Bushra QS, Hyodo M, Nakata Y (2014) Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Manag Res 32(2):124–130CrossRefGoogle Scholar
  61. Nasirahmadi S, Safekordi AA (2011) Whey as a substrate for generation of bioelectricity in microbial fuel cell using E. coli. Int J Environ Sci Technol 8(4):823–830CrossRefGoogle Scholar
  62. Nastro RA, Dumontet S, Ulgiati S, Falcucci G, Vadursi M, Jannelli E, Minutillo M, Cozzolino R, Trifuoggi M, Erme G, De Santis E (2013) Microbial fuel cells fed by solid organic waste: a preliminar experimental study. In: European fuel cell. Piero Lunghi Conference & Exhibition – Rome, 11–13 DecemberGoogle Scholar
  63. Offner A, Sauvant D (2006) Thermodynamic modeling of ruminal fermentations. Anim Res 55(5):343–365CrossRefGoogle Scholar
  64. Oladejo D, Shoewu OO, Yussouff AA, Rapheal H (2015) Evaluation of electricity generation from animal based wastes in a microbial fuel cell. Int J Sci Technol Res 4(4):85–90Google Scholar
  65. Oliveira VB, Simões M, Melo LF, Pinto AMFR (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64CrossRefGoogle Scholar
  66. Pant D, Singh A, Van Bogaert G, Singh Nigam P, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263CrossRefGoogle Scholar
  67. Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, Robledo-Narváez PN, Ponce-Noyola MT, Calva-Calva G, Ríos-Leal E, Galíndez-Mayer J, Estrada-Vázquez C, Ortega-Clemente A, Rinderknecht-Seijas NF (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32(5):353–365CrossRefGoogle Scholar
  68. Puig S, Serra M, Coma M, Balaguer MD, Colprim J (2011) Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs). Water Sci Technol 64:904–909CrossRefGoogle Scholar
  69. Ra CS, Lo KV, Shin JS, Oh JS, Hong BJ (2000) Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment. Water Res 34:965–973CrossRefGoogle Scholar
  70. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRefGoogle Scholar
  71. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195CrossRefGoogle Scholar
  72. Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol Bioeng 97(6):1398–1407CrossRefGoogle Scholar
  73. Rodrigo MA, Cañizares P, Lobato J, Paz R, Sáez C, Linares JJ (2007) Production of electricity from the treatment of urban wastewater using a microbial fuel cell. J Power Sources 169:198–204CrossRefGoogle Scholar
  74. Ramasamy, EV, Gajalakshmi S, Sanjeevi R, Jithesh MN, Abbasi SA (2004) Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors. Bioresour. Technol. 93, 209–212.CrossRefGoogle Scholar
  75. Scott K, Murano C (2007) A study of a microbial fuel cell battery using manure sludge waste. J Chem Technol Biotechnol 82:809–817CrossRefGoogle Scholar
  76. Shizas I, Bagley DM (2004) Experimental determination of energy content of unknown organics in municipal wastewater streams. J Energy Eng 130:45–53CrossRefGoogle Scholar
  77. Strünkmann GW, Müller JA, Albert F, Schwedes J (2006) Reduction of excess sludge production using mechanical disintegration devices. Water Sci Technol 54(5):69–76CrossRefGoogle Scholar
  78. Suzuki K, Tanaka Y, Osada T, Waki M (2002) Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration. Water Res 36:2991–2998CrossRefGoogle Scholar
  79. Tender L, Gray S, Groveman E, Lowry D, Kauffman P (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575CrossRefGoogle Scholar
  80. Tremouli A, Antonopoulou G, Bebelis S, Lyberatos G (2013) Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads. Bioresour Technol 131:380–389CrossRefGoogle Scholar
  81. Wang X, Feng YJ, Lee H (2008) Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol 57(7):1117–1121CrossRefGoogle Scholar
  82. Wei Y, Van Houten RT, Borger AR, Eikelboom DH, Fan Y (2003) Minimization of excess sludge production for biological wastewater treatment. Water Res 37(18):4453–4467CrossRefGoogle Scholar
  83. Wen Q, Wu Y, Cao D, Zhao L, Sun Q (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresour Technol 100(18):4171–4175CrossRefGoogle Scholar
  84. Wilderer PA, Schreff D (2000) Decentralized and centralized wastewater management: a challenge for technology developers. Water Sci Technol 41(1):1–8CrossRefGoogle Scholar
  85. Yan S, Chen X, Wu J, Wang P (2012) Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl Microbiol Biotechnol 94(3):829–838CrossRefGoogle Scholar
  86. Yang Y, Liu T, Liao Q, Ye D, Zhu X, Li J, Li Y (2016) A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. J Mater Chem A 4(41):15913–15919CrossRefGoogle Scholar
  87. Yokoyama H, Ohmori H, Ishida M, Waki M, Tanaka Y (2006) Treatment of cow-waste slurry by a microbial fuel cell and the properties of the treated slurry as a liquid manure. Anim Sci J 77(6):634–638CrossRefGoogle Scholar
  88. Zahn JA, Hatfield JL, Do YS, DiSpirito AA, Laird DA, Pfeiffer RL (1997) Characterization of volatile organic emissions and wastes from a swine production facility. J Environ Qual 26:1687–1696CrossRefGoogle Scholar
  89. Zang GL, Sheng GP, Tong ZH, Liu XW, Teng SX, Li WW, Yu HQ (2010) Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environ Sci Technol 44(7):2715–2720CrossRefGoogle Scholar
  90. Zhang F, He Z (2013) A cooperative microbial fuel cell system for waste treatment and energy recovery. Environ Technol 34(13–14):1905–1913CrossRefGoogle Scholar
  91. Zhang G, Zhao Q, Jiao Y, Wang K, Lee DJ, Ren N (2012) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res 46(1):43–52CrossRefGoogle Scholar
  92. Zupancic GD, Ros M (2003) Heat and energy requirements in thermophilic anaerobic sludge digestion. Renew Energy 28:2255–2267CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Deepika Jothinathan
    • 1
  • A. H. Nasrin Fathima
    • 2
  • Prabhakaran Mylsamy
    • 3
  • L. Benedict Bruno
    • 4
  • Venkatraman Sivasankar
    • 5
  1. 1.Department of Life SciencesCentral University of Tamil NaduThiruvarurIndia
  2. 2.Department of Plant Biology and Plant BiotechnologyPresidency CollegeChennaiIndia
  3. 3.PG & Research Department of BotanyPachaiyappa’s CollegeChennaiIndia
  4. 4.Department of Environmental SciencesBharathiar UniversityCoimbatoreIndia
  5. 5.Department of Civil EngineeringNagasaki UniversityNagasakiJapan

Personalised recommendations