Advertisement

Future Perspectives on Cost-Effective Microbial Fuel Cells in Rural Areas

  • C. Nagendranatha Reddy
  • M. P. Sudhakar
  • Booki Min
  • P. Shanmugam
Chapter

Abstract

To meet the global energy demand, green and sustainable technologies that generate renewable energy are needed. Microbial fuel cell (MFC) is an emerging and potential technology that meets the energy demand with an integrated effort to promote and resolve the stand-alone energy generation. Waste to energy is an alternate technique to afford cost-effective and environment-friendly solution for the rural community in terms of sewage effluent treatment and bioelectricity generation all-round the year.

Keywords

Microbial fuel cell (MFC); Bioelectricity generation; Rural development; Cost-effective substrates; Wastewater treatment 

Notes

Acknowledgement

We thank the Department of Environmental Science and Engineering, CSIR-Central Leather Research Institute, Chennai, India and Department of Environmental Science and Engineering, Kyung Hee University, The Republic of Korea (Research grants from National Research Foundation of Korea (2015R1D1A1A09059935; 2018R1A2B6001507) and Korea-India S & T Co-operation Program (2016K1A3A1A19945953)) for constant support and encouragement for reviewing this chapter for the benefit of the society.

References

  1. Ahn Y, Logan BE, (2012) A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Applied Microbiology and Biotechnology 93 (5):2241–2248CrossRefGoogle Scholar
  2. Badwal SPS, Giddey SS, Munnings C, Bhatt AI, Hollenkamp AF (2014) Emerging electrochemical energy conversion and storage technologies. Frontiers in Chemistry. 2: 79.Google Scholar
  3. Butti SK, Velvizhi G, Sulonen MLK, Haavisto JM, Koroglu EO, Cetinkaya AY, Singh S, Arya D, Annie Modestra J, Vamsi Krishna K, Verma A, Ozkaya B, Lakaniemi A-M, Puhakka JA, Venkata Mohan S (2016) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sust Energ Rev 53:462–476CrossRefGoogle Scholar
  4. Cha J, Choi S, Yu H, Kim H, Kim C (2010) Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78:72–79CrossRefGoogle Scholar
  5. Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol 102:4468–4473CrossRefGoogle Scholar
  6. Choi J, Ahn Y (2013) Continuous electricity generation in stacked air cathode microbial fuel cell treating domestic wastewater. J Environ Manag 130:146–152CrossRefGoogle Scholar
  7. Chouler J, Bentley I, Vaz F, O’Fee A, Cameron PJ, Lorenzo MD (2017) Exploring the use of cost-effective membrane materials for microbial fuel cell based sensors. Electrochim Acta 231:319–326CrossRefGoogle Scholar
  8. Chouler J, Padgett GA, Cameron PJ, Preuss K, Titirici M-M, Ieropoulos I, Lorenzo MD (2016) Towards effective small scale microbial fuel cells for energy generation from urine. Electrochim Acta 192:89–98CrossRefGoogle Scholar
  9. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836CrossRefGoogle Scholar
  10. Cui Y, Rashid N, Hu N, Rehman MSU, Han J-I (2014) Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers Manag 79:674–680CrossRefGoogle Scholar
  11. Das MP (2015) Bioelectricity production using algae in microbial fuel cell. Der Pharma Chemica 7(11):8–10Google Scholar
  12. Dekker A, TerHeijne A, Saakes M, Hamelers HVM, Buisman CJN (2009) Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol 43:9038–9042CrossRefGoogle Scholar
  13. Electric Power Research Institute (2002) U.S. water consumption for power production—the next half century; water and sustainability, Vol. 3. www.epri.com
  14. Eom H, Chung K, Kim I, Han JI (2011) Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor. Chemosphere 85:672–676CrossRefGoogle Scholar
  15. Feng C, Tsai C-C, Ma C-Y, Yu C-P, Hou C-H (2017) Integrating cost-effective microbial fuel cells and energy-efficient capacitive deionization for advanced domestic wastewater treatment. Chem Eng J 330:1–10CrossRefGoogle Scholar
  16. Feng Y, Lee H, Wang X, Liu Y, He W (2010) Continuous electricity generation by a graphite granule baffled air–cathode microbial fuel cell. Bioresour Technol 101:632–638CrossRefGoogle Scholar
  17. Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880CrossRefGoogle Scholar
  18. Feng YJ, He WH, Liu J, Wang X, Qu YP, Ren NQ (2014) A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresour Technol 156:132–138CrossRefGoogle Scholar
  19. Foley JM, Rozendal RA, Hertle CK et al (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629–3637CrossRefGoogle Scholar
  20. Gajda I, Greenman J, Melhuish C, Ieropoulos I (2015) Self-sustainable electricity production from algae grown in a microbial fuel cell system. Biomass Bioenergy 82:87–93CrossRefGoogle Scholar
  21. Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 45(11):5047–5053CrossRefGoogle Scholar
  22. Gonzalez C, Marciniak J, Villaverde S, Leon C, Garcia PA, Munoz R (2008) Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia. Water Sci Technol 58:95–102CrossRefGoogle Scholar
  23. Greenman J, Gálvez A, Giusti L, Ieropoulos I (2009) Electricity from landfill leachate using microbial fuel cells: comparison with a biological aerated filter. Enzym Microb Technol 44:112–119CrossRefGoogle Scholar
  24. Gude VG, Kokabian B, Gadhamshetty V (2013) Beneficial bioelectrochemical systems for energy, water, and biomass production. J Microb Biochem Technol 6:2Google Scholar
  25. Guo K, Hassett DJ, Gu T (2012) Microbial fuel cells: Electricity generation from organic wastes by microbes. In: Chapter 9 in Microbial Biotechnology: Energy and Environment. edited by R. Arora, CAB International, Oxon, United Kingdom. ISBN 978-1845939564, pp 162–189Google Scholar
  26. He L, Du P, Chen Y, Lu H, Cheng X, Chang B, Wang Z (2017) Advances in microbial fuel cells for wastewater treatment. Renew Sust Energ Rev 71:388–403CrossRefGoogle Scholar
  27. He Z, Kan J, Mansfeld F, Angenent LT, Nealson KH (2009) Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria. Environ Sci Technol 43:1648–1654CrossRefGoogle Scholar
  28. Heilmann J, Logan BE (2006) Production of electricity from proteins using a microbial fuel cell. Water Environ Res 78:531–537CrossRefGoogle Scholar
  29. http://www.brl.ac.uk/research/researchthemes/bioenergyselfsustainable/scaleupmicrobialfuelcells.aspxGoogle Scholar
  30. http://www.brl.ac.uk/researchthemes/bioenergyself-sustaining.aspxGoogle Scholar
  31. https://wlvdigital.wordpress.com/2017/10/12/bioenergy-central-pee-power-lights-up-rural-uganda-as-microbial-fuel-cells-generate-electricity-from-wasteGoogle Scholar
  32. Hu X, Liu B, Zhou J, Jin R, Qiao S, Liu G (2015) CO2 fixation, lipid production, and power generation by a novel air lift-type microbial carbon capturefbioelectricity: photosynthetic microbial e cell system. Environ Sci Technol 49:10710–10717CrossRefGoogle Scholar
  33. Hu X, Zhou J, Liu B (2016) Effect of algal species and light intensity on the performance of an air-lift-type microbial carbon capture cell with an algae-assisted cathode. RSC Adv 6:25094–25100CrossRefGoogle Scholar
  34. Ieropoulos I, Greenman J, Melhuish C (2008) Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int J Energy Res 32:1228–1240CrossRefGoogle Scholar
  35. Kondaveeti S, Kakarla R, Kim HS, Kim B, Min B (2018) The performance and long-term stability of low cost separators in single chamber bottle type microbial fuel cells. Environ Technol 39(3), 288–297CrossRefGoogle Scholar
  36. Kondaveeti S, Moon MM, Min B (2017) Optimum spacing between electrodes in an air-cathode single chamber microbial fuel cell with a low-cost polypropylene separator. Bioprocess Biosyst Eng 40(12), 1851–1858​CrossRefGoogle Scholar
  37. Li H, Tian Y, Qu Y, Qiu Y, Liu J, Feng Y (2017) A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration. Sci Rep 7:1–9CrossRefGoogle Scholar
  38. Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924CrossRefGoogle Scholar
  39. Liu H, Cheng S, Huang L et al (2008) Scale-up of membrane-free single-chamber microbial fuel cells. J Power Sources 179:274–279CrossRefGoogle Scholar
  40. Liu W, Cheng S (2014) Microbial fuel cells for energy production from wastewaters: the way toward practical application. Appl Phys Eng 15:841–861Google Scholar
  41. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381CrossRefGoogle Scholar
  42. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671CrossRefGoogle Scholar
  43. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels T, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640CrossRefGoogle Scholar
  44. Logan BE, Regan JM (2006) Pennsylvania state university. Envir Sci Technol 40:5172–5180 American chemical societyCrossRefGoogle Scholar
  45. Logan BE, Wallack MJ, Kim KY, He W, Feng Y, Saikaly PE (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2:206–214CrossRefGoogle Scholar
  46. Lu N, Zhou S-G, Zhuang L, Zhnag J-T, Ni J-R (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251CrossRefGoogle Scholar
  47. Malaeb L, Katuri KP, Logan BE, Maab H, Nunes SP, Saikaly PE (2013) A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environ Sci Technol 47:11821–11828CrossRefGoogle Scholar
  48. McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer—can this be achieved? Environ Sci Technol 45:7100–7106CrossRefGoogle Scholar
  49. Min B, Angelidaki I (2008) Innovative microbial fuel cell for electricity production from anaerobic reactors. J Power Sources 180:641–647CrossRefGoogle Scholar
  50. Min B, Kim JR, Oh S, Regan JM, Logan BE (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968CrossRefGoogle Scholar
  51. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814CrossRefGoogle Scholar
  52. Nagendranatha Reddy C, Annie Modestra J, Kumar AN, Venkata Mohan S (2015) Waste remediation integrating with value addition: biorefinery approach towards sustainable bio-based technologies. In: Kalia VC (ed) Microbial factories, biofuels, waste treatment, vol 1. Springer India, New Delhi, pp 231–256CrossRefGoogle Scholar
  53. Ng F-L, Phang S-M, Periasamy V, Yunus K, Fisher AC (2017) Enhancement of power output by using alginate immobilized algae in biophotovoltaic devices. Sci Rep 7:16237.  https://doi.org/10.1038/s41598-017-16530-y CrossRefGoogle Scholar
  54. Nielsen ME, Reimers CE, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41:7895–7900CrossRefGoogle Scholar
  55. Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010a) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543CrossRefGoogle Scholar
  56. Pant D, Bogaert GV, Diels L, Vanbroekhoven K (2010b) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101(6):1533–1543CrossRefGoogle Scholar
  57. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81:348–355CrossRefGoogle Scholar
  58. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRefGoogle Scholar
  59. Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298CrossRefGoogle Scholar
  60. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alex Eng J 54:745–756CrossRefGoogle Scholar
  61. Ramadan BS, Purwono (2017) Challenges and opportunities of microbial fuel cells (MFCs) technology development in Indonesia. MATEC web of conferences. 101, 02018CrossRefGoogle Scholar
  62. Raman K, Lan JC-W (2012) Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances. Appl Energy 100:100–105CrossRefGoogle Scholar
  63. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Environ Sci Technol 35:192–195CrossRefGoogle Scholar
  64. Renewable energy policy network for 21st century (REN21) Report. http://www.ren21.net/Portals/0/documents/activities/Topical%20Reports/REN21_10yr.pdf
  65. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212CrossRefGoogle Scholar
  66. Rodrigo MA, Cañizares P, García H, Linares JJ, Lobato J (2009) Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell. Bioresour Technol 100:4704–4710CrossRefGoogle Scholar
  67. Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21:259–264CrossRefGoogle Scholar
  68. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. J Power Sources 356:225–244CrossRefGoogle Scholar
  69. Saratale GD, Saratale RG, Shahid MK, Zhen G, Kumar G, Shin H-S, Choi Y-G, Kim S-H (2017) A comprehensive overview on electro-active biofilms, role of exoelectrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere 178:534–547CrossRefGoogle Scholar
  70. Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 7:2619–2629CrossRefGoogle Scholar
  71. Scott K, Murano C (2007) A study of a microbial fuel cell battery using manure sludge waste. J Chem Technol Biotechnol 82:809–817CrossRefGoogle Scholar
  72. Shizas I, Bagley DM (2004) Experimental determination of energy content of unknown organics in municipal wastewater streams. J Energ Eng 130:45–53CrossRefGoogle Scholar
  73. Sleutels THJA, TerHeijne A, Buisman CJN, Hamelers HVM (2012) Bioelectrochemical systems: an outlook for practical applications. Chem Sus Chem 5:1012–1019CrossRefGoogle Scholar
  74. Strik DPBTB, Terlouw H, Hamelers HVM, Buisman CJN (2008) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668CrossRefGoogle Scholar
  75. Strik D, Timmers R, Helder M, Steinbusch JJK, Hameters H, Buisman JN (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29:41–49CrossRefGoogle Scholar
  76. T E R I (2015) Industrial and urban waste management in India. The Energy and Resources Institute, New Delhi 34 ppGoogle Scholar
  77. Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P et al (2008) The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J Power Sources 179:571–575CrossRefGoogle Scholar
  78. Tommasi T, Lombardelli G (2017) Energy sustainability of Microbial Fuel Cell (MFC): a case study. J Power Sources 356:438–447CrossRefGoogle Scholar
  79. Ucar D, Zhang Y, Angelidaki I (2017) An overview of electron acceptors in microbial fuel cells. Front Microbiol 8:643CrossRefGoogle Scholar
  80. Velvizhi G, Venkata Mohan S (2017) Multi-electrode bioelectrochemical system for the treatment of high total dissolved solids bearing chemical based wastewater. Bioresour Technol 242:77–86CrossRefGoogle Scholar
  81. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076CrossRefGoogle Scholar
  82. Venkata Mohan S, Srikanth S, Chiranjeevi P, Arora S, Chandra C (2014) Algal biocathode for in situ terminal electron acceptor (TEA) production: synergetic association of bacteria-microalgae metabolism for the functioning of biofuel cell. Bioresour Technol 166:566–574CrossRefGoogle Scholar
  83. Wang X, Feng Y, Liu J, Lee H, Li C, Li N, Ren N (2010) Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosens Bioelectron 25:2639–2643CrossRefGoogle Scholar
  84. Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of positive poised potential. Electrochem Acta 54:1109–1114CrossRefGoogle Scholar
  85. Wang YK, Sheng GP, Shi BJ et al (2013) A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment. Sci Rep 3:1864–1870CrossRefGoogle Scholar
  86. Wang Y-P, Liu X-W, Li W-W, Li F, Wang Y-K, Sheng G-P, Zeng RJ, Yu H-Q (2012) A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment. Appl Energy 98:230–235CrossRefGoogle Scholar
  87. Water Infrastructure Network (2001) Water infrastructure now: recommendations for clean and safe water in the 21st century. www.win-water.org/win_reports/pub2/winow.pdf
  88. Xu GH, Wang YK, Sheng GP, Mu Y, Yu HQ (2014) An MFC-based online monitoring and alert system for activated sludge process. Sci Rep 4:6779CrossRefGoogle Scholar
  89. Yagishita T, Sawayama S, Tsukahara K, Ogi T (1997) Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1, 4-naphthoquinone on the current output of photosynthetic electrochemical cell. Sol Energy 61:347–353CrossRefGoogle Scholar
  90. Yuan Y, Chen Q, Zhou S, Zhuang L, Hu P (2012) Improved electricity production from sewage sludge under alkaline conditions in an insert-type air-cathode microbial fuel cell. J Chem Technol Biotechnol 87(1):80–86CrossRefGoogle Scholar
  91. Zhang Y, Angelidaki I (2012) A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC). Biosens Bioelectron 38:189–194CrossRefGoogle Scholar
  92. Zhang Y, Liu L, Bruggen BV, Yang F (2017) Nanocarbon based composite electrodes and their application in microbial fuel cells. J Mater Chem A 5:12673–12698CrossRefGoogle Scholar
  93. Zhang Y, Noori JS, Angelidaki I (2011) Simultaneous organic carbon, nutrients removal and energy production in a photomicrobial fuel cell (PFC). Energy Environ Sci 4:4340–4346CrossRefGoogle Scholar
  94. Zhou M, Chi M, Luo J et al (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427–4435CrossRefGoogle Scholar
  95. Zuo Y, Maness P-C, Logan BE (2006) Electricity production from steam-exploded corn stover biomass. Energy Fuel 20(4):1716–1721CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • C. Nagendranatha Reddy
    • 1
  • M. P. Sudhakar
    • 2
  • Booki Min
    • 1
  • P. Shanmugam
    • 2
  1. 1.Department of Environmental Science and EngineeringKyung Hee UniversityYongin-siRepublic of Korea
  2. 2.Department of Environmental Science and EngineeringCSIR-Central Leather Research InstituteChennaiIndia

Personalised recommendations