A Review of the Health Sector Impacts of 4 °C or more Temperature Rise

  • Sandra de Souza Hacon
  • Beatriz Fátima Alves de Oliveira
  • Ismael Silveira


Threat of extreme warming on human health poses risks worldwide. The impacts of extreme warming on human health can be direct and indirect, and depends on other problems already existing in the region. To evaluate the impacts of warming above 4 °C on human health, a narrative review was carried out with studies and reports on the potential consequences of a high heating in human health in Brazil. The main direct and indirect impacts on human health and sociodemographic and economic vulnerability were considered in this review. The heat stress was most relevant direct effect; this condition is characterized by continuous maximum temperatures above 37 °C and high air humidity that difficult the heat loss through sweating by human body intensifying the well-known risks of heat-related illnesses and limit workers’ productivity, specially in the North and Midwest region. In addition, the raise the average temperature above 4 °C at the end of the century may increase the intensity and frequency of droughts with human health effects associated with the unavailability of treated water such as increased gastroenteritis and hepatitis A. For this same scenario and period, the municipalities of the North, Northeast, Southeast and South regions will present even more favorable thermal conditions for the spread of Aedes aegypti increasing the potential of dissemination of vector diseases such as dengue fever, chikungunya and zika virus. This study provide evidence that extreme temperatures have the potential to impact on human health of the Brazilian population, especially those who are more vulnerable socially and economically.


  1. Ahern, M., Kovats, R. S., Wilkinson, P., Few, R., & Matthies, F. (2005). Global health impacts of floods: Epidemiologic evidence. Epidemiologic Reviews, 27, 36–46.CrossRefGoogle Scholar
  2. Alexander, L. V., & Arblaster, J. M. (2009). Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. International Journal of Climatology, 29, 417–435. CrossRefGoogle Scholar
  3. Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., et al. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 7(5), e35671. PMID: 22693548 CrossRefGoogle Scholar
  4. American Conference of Governmental Industrial Hygienists (ACGIH). (1996). Threshold Limit Values for chemical substances and physical agents. Biological Exposure Indices, American Conference of Governmental Industrial Hygienists, Cincinnati, OH.Google Scholar
  5. Anderson, B. G., & Bell, M. L. (2009). Weather-related mortality: How heat, cold and heatwaves affect mortality in the United States. Epidemiology, 20(2), 205–2013.CrossRefGoogle Scholar
  6. Baccini, M., Kosatsky, T., Analitis, A., Anderson, H. R., D’Ovidio, M., Menne, B., et al. (2011). Impact of heat on mortality in 15 European cities: attributable deaths under different weather scenarios. Journal of Epidemiology and Community Health, 65(1), 64–70.CrossRefGoogle Scholar
  7. Barcellos, C., & Lowe, R. (2014). Expansion of the dengue transmission area in Brazil: the role of climate and cities. Tropical Medicine & International Health, 19(2), 159–168.CrossRefGoogle Scholar
  8. Barcellos, C., Monteiro, A. M. V., Corvalán, C., Gurgel, H. C., Carvalho, M. S., Artaxo, P., et al. (2009). Mudanças climáticas e ambientais e as doenças infecciosas: cenários e incertezas para o Brasil. Epidemiol Serv Saúde, 18(3), 285–304.Google Scholar
  9. Barcellos, C., & Sabroza, P. C. (2001). The place behind the case: leptospirosis risks and associated environmental conditions in a flood-related outbreak in Rio de Janeiro. Cadernos de Saúde Pública, 17(Suppl), S59–S67.CrossRefGoogle Scholar
  10. Basagaña, X., Sartini, C., Barrera-Gómez, J., Dadvand, P., Cunillera, J., Ostro, B., et al. (2011). Heat waves and cause-specific mortality at all ages. Epidemiology, 22, 765–772.CrossRefGoogle Scholar
  11. Batista, E. P. A., Costa, E. F. M., & Silva, A. A. (2014). Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes. Parasites & Vectors, 7, 251.CrossRefGoogle Scholar
  12. Baveja, U. K., Jyoti, A. S., Anand, B. S., & Agarwal, D. S. (1984 Sep). Optimum conditions for growth of Giardia lamblia in vitro. The Journal of Communicable Diseases, 16(3), 184–189.Google Scholar
  13. Becker, J. A., & Stewart, L. K. (2011). Heat-related illness. American Family Physician, 83(11), 1325–1330.Google Scholar
  14. Bell, M. L., O’Neill, M. S., Ranjit, N., Borja-Aburto, V. H., Cifuentes, L. A., & Gouveia, N. C. (2008 Aug). Vulnerability to heat-related mortality in Latin America: a case-crossover study in Sao Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. International Journal of Epidemiology, 37(4), 796–804.CrossRefGoogle Scholar
  15. Benicio, M. H., & Monteiro, C. A. (2000). Tendência secular da doença diarréica na infância na cidade de São Paulo (1984-1996). Rev Saúde Pública, 34, 83–90.CrossRefGoogle Scholar
  16. Bennet, H., Jones, R., Keating, G., Woodward, A., Hales, S., & Metcalfe, S. (2014). Health and equity impacts of climate change in Aotearoa-New Zealand, and health gains from climate action. The New Zealand Medical Journal, 127(1406), 16–31.Google Scholar
  17. Bentham, G., & Langford, I. (1995). Climate change and the incidence of food poisoning in England and Wales. International Journal of Biometeorology, 39, 81–86.CrossRefGoogle Scholar
  18. Bentham, G., & Langford, I. (2001). Environmental temperatures and the incidence of food poisoning in England and Wales. International Journal of Biometeorology, 45, 22–26.CrossRefGoogle Scholar
  19. Beserra, E. B., Fernandes, C. R. M., Silva, S. A. O., Silva, L. A., & Santos, J. W. (2009). Efeitos da temperatura no ciclo de vida, exigências térmicas e estimativas do número de gerações anuais de Aedes aegypti (Diptera, Culicidae). Ser Zool, 99(2), 142–148.CrossRefGoogle Scholar
  20. Bitencourt, D. P., Ruas, A. C., & Maia, P. A. (2012). Análise da contribuição das variáveis meteorológicas no estresse térmico associada à morte de cortadores de cana-de-açúcar. Cadernos de Saúde Pública, 28(1), 65–74.CrossRefGoogle Scholar
  21. Blanford, J. I., Blanford, S., Crane, R. G., Mann, M. E., Paaijmans, K. P., Schreiber, K. V., et al. (2013). Implications of temperature variation for malaria parasite development across Africa. Scientific Reports, 3, 1300.CrossRefGoogle Scholar
  22. Botelho, C., Correia, A. L., Silva, A. M., Macedo, A. G., & Silva, C. O. (2003). Environmental factors and hospitalization of under-five children with acute respiratory infection. Cadernos de Saúde Pública, 19(6), 1771–1780.CrossRefGoogle Scholar
  23. Bouchama, A., & Knochel, J. P. (2002). Heat stroke. The New England Journal of Medicine, 346(25), 1978–1988.CrossRefGoogle Scholar
  24. Brasil. Ministério da Saúde. (2015). Secretaria de Vigilância em Saúde. Resultados LIRAa Nacional 2015. Brasília, 2015. Available at
  25. Brasil. Ministério da Saúde. (2016a). Secretaria de Vigilância em Saúde. Situação epidemiológica da dengue, 2016. [Accessed Jan 2016]. Available at:
  26. Brasil. Ministério da Saúde. (2016b). Secretaria de Vigilância em Saúde. Situação epidemiológica da leptospirose, 2015. [Accessed Jan 2016]. Available at:
  27. Bröde, O., Fiala, D., & Blazejczyk, K. (2011). Deriving the operational procedure for the universal thermal climate index UTCI. International Journal of Biometeorology, special issue UTCI.Google Scholar
  28. Bühler, H. F., Ignotti, E., Neves, S. M. A. S., & Hacon, S. (2014). Spatial analysis of integrated determinant indicators of mortality from acute diarrhea in children under 1 year of age in geographical regions. Ciênc. Saúde Coletiva., 19(10), 4131–4140.CrossRefGoogle Scholar
  29. Caminade, C., Kovats, S., Rocklöv, J., Tompkins, A. M., Morse, A. P., Colón-González, F. J., et al. (2014). Impact of climate change on global malaria distribution. Proceedings of the National Academy of Sciences of the United States of America, 111, 3286–3291.CrossRefGoogle Scholar
  30. Campos, G. S., Bandeira, A. C., & Sardi, S. I. (2015 Oct). Zika virus outbreak, Bahia, Brazil. Emerging Infectious Diseases, 21(10), 5.CrossRefGoogle Scholar
  31. Carmargo, M. G., & Furlan, M. M. D. P. (2011). Resposta fisiológica do corpo às temperaturas elevadas: exercício, extremos de temperatura e doenças térmicas. Saúde e Pesquisa, 4(2), 278–288.Google Scholar
  32. Carvalho, B. M., Rangel, E. F., Ready, P. D., & Vale, M. M. (2015). Ecological niche modeling predicts southward expansion of Lutzomyia (Nyssomya) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under climate change. PLosONE, 10(11), e0143282.CrossRefGoogle Scholar
  33. Carlton, E. J., Woster, A. P., DeWitt, P., Goldstein, R. S., & Levy, K. (2016). A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases. International Journal of Epidemiology, 45(1), 117–130.CrossRefGoogle Scholar
  34. Checkley, W., Epstein, L. D., Gilman, R. H., Figueroa, D., Cama, R. I., Patz, J. A., et al. (2000). Effect of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet, 355(9202), 442–450.CrossRefGoogle Scholar
  35. Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., et al. (2014). Evaluation of the eta simulations nested in three global climate models. American Journal of Climate Change, 3(5), 438–454.CrossRefGoogle Scholar
  36. Claeson, M., & Waldman, R. J. (2000). The evolution of child health programmes in developing countries: from targeting diseases to targeting people. Bulletin of the World Health Organization, 78, 1234–1245.Google Scholar
  37. Coelho, M. S., & Massad, E. (2012). The impact of climate on Leptospirosis in São Paulo, Brazil. International Journal of Biometeorology, 56(2), 233–241.CrossRefGoogle Scholar
  38. Costa, D., Hacon, S., Siqueira, A., Pinheiro, S., Gonçalves, K., Oliveira, A., et al. (2015). Municipal temperature and heatwave predictions as a tool for integrated socio-environmental impact analysis in Brazil. American Journal of Climate Change, 4, 385–396.CrossRefGoogle Scholar
  39. D’Ippoliti, D., et al. (2010). The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environmental Health, 9, 37.Google Scholar
  40. Doherty, R. M., Heal, M. R., Wilkinson, P., Pattenden, S., Vieno, M., Armstrong, B., et al. (2009). Current and future climate- and air pollution-mentioned impacts on human health. Environmental Health, 8(Suppl I), S8.CrossRefGoogle Scholar
  41. Dourado, F., Arraes, T. C., & Silva, F. e. (2012). O Megadesastre da Região Serrana do Rio de Janeiro – as causas dos moimentos de massa e a distribuição espacial dos investimentos de reconstrução no pós-desastre. Anuário do Instituto de Geociências, 25(2), 43–54.Google Scholar
  42. D’Souza, R. M., Hall, G., & Becker, N. G. (2008). Climatic factors associated with hospitalizations for rotavirus diarrhoea in children under 5 years of age. Epidemiology and Infection, 136, 56–64.Google Scholar
  43. EM-DAT. (2015). The International disasters database. Centre for Research on the Epidemiology of Disasters – CREA DISDAT [Accessed Nov 2015]. Available at
  44. Fleury, M., Charron, D., Holt, J., Allen, O., & Maarouf, A. (2006). A time series analysis of the relation of ambient temperature and common bacterial enteric infections in two Canadian provinces. International Journal of Biometeorology, 50, 385–391.CrossRefGoogle Scholar
  45. Freitas, C. M., Carvalho, M. L., Ximenes, E. F., Arraes, E. F., & Gomes, J. O. (2012). Vulnerabilidade socioambiental, redução do risco de desastres e construção da resiliência – lições do terremoto no Haiti e das chuvas fortes na Região Serrana, Brasil. Ciência & Saúde Coletiva, 17(6), 1577–1586.CrossRefGoogle Scholar
  46. Freitas, C. M., Silva, D. R. X., Sena, A. R. M., Silva, E. L., Sales, L. B. F., Carvalho, M. L., et al. (2014). Desastres naturais e saúde: uma análise da situação do Brasil. Ciência & Saúde Coletiva, 19(9), 3645–3656.CrossRefGoogle Scholar
  47. Gasparrini, A., Guo, Y., Hashizume, M., Lavigne, E., Zanobetti, A., Schwartz, J., et al. (2015). Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet, 6736(14), 62114–62110.Google Scholar
  48. Giang, P. N., Dung, V., Bao Giang, K., Vinhc, H. V., & Rocklöv, J. (2014). The effect of temperature on cardiovascular disease hospital admissions among elderly people in Thai Nguyen Province, Vietnam. Global Health Action, 8, 23649.CrossRefGoogle Scholar
  49. Gomes, A. F., Nobre, A. A., & Cruz, O. G. (2012 Nov). Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001-2009. Cadernos de Saúde Pública, 28(11), 2189–2197.CrossRefGoogle Scholar
  50. Gonçalves, F. L., Braun, S., Dias, P. L., & Sharovsky, R. (2007). Influences of the weather and air pollutants on cardiovascular disease in the metropolitan area of São Paulo. Environmental Research, 104(2), 275–281.CrossRefGoogle Scholar
  51. Gouveia, N., & Fletcher, T. (2000). Time series analysis of air pollution and mortality: effects by cause, age and socioeconomic status. Journal of Epidemiology and Community Health, 54(10), 75–75.CrossRefGoogle Scholar
  52. Gouveia, N., Freitas, C. U., Martins, L. C., & Marcilio, I. O. (2006). Respiratory and cardiovascular hospitalizations associated with air pollution in city of São Paulo, Brazil. Cadernos de Saúde Pública, 22(12), 2669–2677.CrossRefGoogle Scholar
  53. Gouveia, N., Shakoor, H., & Armstrong, B. (2003). Socioeconomic differentials in the temperature-mortality relationship in São Paulo, Brazil. International Journal of Epidemiology, 32, 390–397.CrossRefGoogle Scholar
  54. Gracie, R., Barcellos, C., Magalhães, M., Souza-Santos, R., & Barrocas, P. R. (2014). Geographical scale effects on the analysis of leptospirosis determinants. International Journal of Environmental Research and Public Health, 11(10), 10366–10383.CrossRefGoogle Scholar
  55. Graudenz, G. S., Latorre, M. R., Tribess, A., Oliveira, C. H., & Kalil, J. (2006). Persistent allergic rhinitis and indoor air quality perception – an experimental approach. Indoor Air, 16(4), 313–319.CrossRefGoogle Scholar
  56. Guimarães, R. M., Cruz, O. G., Parreira, V. G., Mazoto, M. L., Vieira, J. D., & Asmus, C. I. (2014). Temporal analysis of the relationship between leptospirosis and the occurrence of flooding due to rainfall in the city of Rio de Janeiro, Brazil, 2007-2012. Ciência & Saúde Coletiva, 19(9), 3683–3692.CrossRefGoogle Scholar
  57. Guo, Y., Gasparrini, A. B., Li, S., Tawatsupa, B., Tobias, A., et al. (2014). Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology, 25(6), 781–709.CrossRefGoogle Scholar
  58. Hacon, et al. (2016). Vulnerabilidade, riscos e impactos das mudanças climáticas sobre a saúde do Brasil. In Terceira Comunicação Nacional sobre Mudanças Climáticas à UNFCC (TCN-UNFCC).Google Scholar
  59. Hajat, S., & Kosatky, T. (2014). Heat-related mortality: a review and exploration of heterogeneity. Journal of Epidemiology and Community Health, 64, 753e760.Google Scholar
  60. Hashizume, M., Armstrong, B., Wagatsuma, Y., Faruque, A. S. G., Hayashi, T., & Sack, D. A. (2008). Rotavirus infections and climate variability in Dhaka, Bangladesh: a time-series analysis. Epidemiology and Infection, 136(9), 1281–1289.CrossRefGoogle Scholar
  61. Heller, L., Colosimo, E. A., & Antunes, C. M. F. (2003). Environmental sanitation conditions and health impact: A case-control study. Revista da Sociedade Brasileira de Medicina Tropical, 36, 41–50.CrossRefGoogle Scholar
  62. Hii, Y. L., Rocklöv, J., Ng, N., Tang, C. S., Pang, F. Y., & Sauerborn, R. (2009). Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Global Health Action, 2, 2036.CrossRefGoogle Scholar
  63. Honório, N. A., Codeço, C. T., Alves, F. C., & Magalhães, M. (2009). Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps. Journal of Medical Entomology, 46, 1001–1014.CrossRefGoogle Scholar
  64. Horta, M. A., Bruniera, R., Ker, F., Catita, C., & Ferreira, A. P. (2014). Temporal relationship between environmental factors and the occurrence of dengue fever. International Journal of Environmental Health Research, 24(5), 471–481.CrossRefGoogle Scholar
  65. Huynen, M., & Martens, P. C. (2015). Climate change effects on heat- and cold-related mortality in the Netherlands: A scenario-based integrated environmental health impact assessment. International Journal of Environmental Research and Public Health, 12(10), 13295–13320.CrossRefGoogle Scholar
  66. Ignotti, E., Hacon, S., Junger, W. L., Mourão, D., Longo, K., Freitas, S., et al. (2010 Apr). Air pollution and hospital admissions for respiratory diseases in the subequatorial Amazon: a time series approach. Cadernos de Saúde Pública, 26(4), 747–761.CrossRefGoogle Scholar
  67. Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Mitigation of climate change. New York: Cambridge University Press; 2014.Google Scholar
  68. Intergovernmental Panel on Climate Change (IPCC). (2013). Climate change: The physical science basis: Summary for policymakers; Intergovernmental panel on climate change, Working group I contribution to the IPCC fifth assessment report; IPCC: Geneva, Switzerland, 2013.Google Scholar
  69. ISO 7243. (1982). Hot Environments—Estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). Geneva, Switzerland: International Standards Organization.Google Scholar
  70. Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51–63.CrossRefGoogle Scholar
  71. Kaiser, R., et al. (2007). The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality. American Journal of Public Health, 97(Suppl 1), S158–S162.CrossRefGoogle Scholar
  72. Kinsgley, S. L., Eliot, M. N., Gold, J., Vanderslice, R. R., & Wellenius, G. A. (2015). Current and projected heat-related morbidity and mortality in Rhode Island. Environmental Health Perspectives.Google Scholar
  73. Kjellstrom, T., Woodward, A., Gohar, L., Lowe, J., Lemke, B., Lines, L., et al. (2015). The risk of heat stress to people. In D. King, D. Schrag, Z. Dadi, Q. Ye, & A. Ghosh (Eds.), Climate change: A risk assessment. London: UK Foreign and Commonwealth Office.Google Scholar
  74. Kjellstrom, T., et al. (2015). Hothaps analysis for 2015 WHO project. In Who national profiles on climate change and human health – contribution on heat stress, occupational health and labor productivity.Google Scholar
  75. Kjellstrom T., et al. (2016). Climate change health impact profiles (ClimateCHIPs). Available: in
  76. Ko, A. I., Reis, M. G., Dourado, C. M. R., Johnson, W. D., & Riley, L. W. (1999). Urban epidemic of severe leptospirosis in Brazil. The Lancet, 354(9181), 820–825.CrossRefGoogle Scholar
  77. Kolstad, E. W., & Johansson, K. A. (2011). Uncertainties associated with quantifying climate change impacts on human health: A case study for diarrhea. Environmental Health Perspectives, 119(3), 299–305.CrossRefGoogle Scholar
  78. Kosek, M., Bern, C., & Guerrant, R. L. (2003). The global burden of diarrhoeal disease, as estimated from studies published between 1992 and 2000. Bulletin of the World Health Organization, 81, 197–204 Epub 2003.Google Scholar
  79. Lainson, R., & Shaw, J. J. (1968). Leishmaniasis in Brazil I. Observations on enzootic rodent leishmaniasis - Incrimination of Lutzomyia flaviscutellata (Mangabeira) as the vector in the lower Amazonian Basin. Transactions of the Royal Society of Tropical Medicine and Hygiene, 62, 385–395.CrossRefGoogle Scholar
  80. Lainson, R., Shaw, J. J., Silveira, F. T., de Souza, A. A., Braga, R. R., & Ishikawa, E. A. (1994). The dermal leishmaniases of Brazil, with special reference to the eco-epidemiology of the disease in Amazonia. Memórias do Instituto Oswaldo Cruz, 89(3), 435–443.CrossRefGoogle Scholar
  81. Laporta, G. Z., Linton, Y.-M., Wilkerson, R. C., Bergo, E. S., Nagaki, S. S., Sant’Ana, D. C., et al. (2015). Malaria vectors in South America: current and future scenarios. Parasites & Vectors, 8, 426.CrossRefGoogle Scholar
  82. Le Tertre, A., et al. (2006). Impact of the 2003 heatwave on all-cause mortality in 9 French cities. Epidemiology, 17, 75–79.CrossRefGoogle Scholar
  83. Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A., & Rocklöv, J. (2014). Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLosOne, 9(3), 289783.CrossRefGoogle Scholar
  84. Lounibos, L. P., O’Meara, G. F., Juliano, S. A., Nishimura, N., Escher, R. L., Reiskind, M. H., et al. (2010). Differential survivorship of invasive mosquito species in south Florida cemeteries: Do site-specific microclimates explain patterns of coexistence and exclusion? Annals of the Entomological Society of America, 103, 757–770.CrossRefGoogle Scholar
  85. Lund, T. C., & Baird-Parker, G. W. (2000). The microbiological safety and quality of food (pp. 101–121). Gaithersburg, MD: Aspen Publishers.Google Scholar
  86. Maia, P. A., Ruas, A. C., & Bittencourt, D. P. (2015). Wet-bulb globe temperature index estimation using meteorological data from São Paulo State, Brasil. International Journal of Biometeorology, 59(10), 1395–1403.CrossRefGoogle Scholar
  87. Mascarenhas, M. D. M., Vieira, L. C., Lanzieri, T. M., Leal, A. P. P. R., Duarte, A. F., & Hatch, D. L. (2008). Poluição atmosférica devido à queima de biomassa florestal e atendimentos de emergência por doença respiratória em Rio Branco, Brasil - Setembro, 2008. Jornal Brasileiro e Pneumologia, 34(1), 46–46.Google Scholar
  88. Matsueda, M. (2011). Predictability of Euro-Russian blocking in summer of 2010. Geophysical Research Letters, 38(6).CrossRefGoogle Scholar
  89. McMichael, A. J., Wilkinson, P., Kovats, R. S., Pattenden, S., Hajat, S., Armstrong, B., et al. (2008). International study of temperature, heat and urban mortality: the “ISOTHURM” project. International Journal of Epidemiology, 37, 1121–1131.CrossRefGoogle Scholar
  90. Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997.CrossRefGoogle Scholar
  91. Mendes, C. S., Coelho, A. B., Féres, J. G., Souza, E. C., & Cunha, D. A. (2016). Impacto das mudanças climáticas sobre a leishmaniose no Brasil. Ciência & Saúde Coletiva, 21(1), 263–272.CrossRefGoogle Scholar
  92. Molino-Cruz, A., & Barillas-Mury, C. (2014). The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes. Memórias do Instituto Oswaldo Cruz, 109, 1–6.CrossRefGoogle Scholar
  93. Mordecai, E. A., Paaijmans, K. P., Johnson, L. R., Blazer, C., Ben-Horin, T., Moor, E., et al. (2012). Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters, 16(1), 22–30.CrossRefGoogle Scholar
  94. Moreno, A. R. (2006). Climate change and human health in Latin America: drives, effects and policies. Regional Environmental Change, 6, 157–164.CrossRefGoogle Scholar
  95. Murrell, E. G., Damal, K., Lounibos, L. P., & Juliano, S. A. (2011). Distributions of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability. Annals of the Entomological Society of America, 104, 688–698.CrossRefGoogle Scholar
  96. Narváez, L., Lavell, A., & Ortega, G. P. (2009). La gestión del riesgo de desastres: un enfoque basado en procesos. San Isidro: Secretaría General de la Comunidad Andina; 2009.Google Scholar
  97. Nassis, G. P., Brito, J., Dvorak, J., Chalabi, H., & Racinais, S. (2015). The association of environmental heat stress with performance: analysis of the 2014 FIFA World Cup Brazil. British Journal of Sports Medicine, 49, 609–613.CrossRefGoogle Scholar
  98. Naumova, E. N., Jagai, J. S., Matyas, B., DeMaria, A., MacNeill, I. B., & Griffiths, J. K. (2007). Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiology and Infection, 135, 281–292.CrossRefGoogle Scholar
  99. Oehler, E., Watrin, L., Larre, P., Leparc-Golfrt, I., Lestère, S., Valour, F., et al. (2014). Zika virus infection complicated by Guillain-Barré syndrome: case report, French Polynesia, December 2013. Euro Surveillance, 19(9), 20720.Google Scholar
  100. Oliveira, B. F., Ignotti, E., Artaxo, P., Saldiva, P. H., Junger, W. L., & Hacon, S. (2012). Risk assessment of PM (2.5) to child residents in Brazilian Amazon region with biofuel production. Environmental Health, 11, 64.CrossRefGoogle Scholar
  101. Oliveira, B. F. A., Protázio, G., Jünger, W. L., Hacon, S. (2016). Tendência e a influência de variáveis climáticas nas internações por diarreia em menores de cinco anos, 2016 (no prelo).Google Scholar
  102. Oliveira, T. V., Marinho, D. P., Costa Neto, C., & Kligerman, D. C. (2012). Climate variables, living conditions and the health of the population: leptospirosis in the city of Rio de Janeiro from 1996 to 2009. Ciência & Saúde Coletiva, 17(6), 1569–1576.CrossRefGoogle Scholar
  103. Ostro, B. (2004). Outdoor air pollution: Assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization, 2004 (WHO Environmental Burden of Disease Series, No. 5).Google Scholar
  104. Otto, et al. (2014). A tool for the estimation and analysis of local climate and population heat exposure. Available:, 2014.
  105. Parham, P. E., & Michael, E. (2010). Modeling the effects of weather and climate change on malaria transmission. Environmental HealthPerspectives, 118, 620–626.CrossRefGoogle Scholar
  106. Patz, J. A., Frumkim, H., Holloway, T., Vimont, D. J., & Hainese, A. (2014). Climate change: challanges and opportunities for global health. JAMA, 312, 1565–2580.CrossRefGoogle Scholar
  107. Perkins, S. E., & Alexander, L. V. (2013). On the measurement of heatwaves. Journal of Climate, 26, 4500–4517.CrossRefGoogle Scholar
  108. Pimentel, M., Grüdtner, L., & Zimerman, L. I. (2006). Seasonal variation of ventricular tachycardia registered in 24-hour Holter monitoring. Arquivos Brasileiros de Cardiologia, 87(4), 403–406.CrossRefGoogle Scholar
  109. Rangel, E. F., Costa, S. M., & Carvalho, B. M. (2014). Environmental changes and the geographic spreading of American cutaneous leishmaniasis in Brazil. In D. Claborn (Ed.), Leishmaniasis – Trends in epidemiology, diagnosis and treatment. Rijeka, Croatia: InTech. CrossRefGoogle Scholar
  110. Rasch, R. J. (2015). Assessing urban vulnerability to flood hazard in Brazilian municipalities. Environment and Urbanization, 28, 145. CrossRefGoogle Scholar
  111. Robine, J.-M., Cheung, S. L. K., Le Roy, S., et al. (2008). Death toll exceeded 70000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178.CrossRefGoogle Scholar
  112. Robinson, P. J. (2001). On the definition of a heat wave. Journal of Applied Meteorology, 40, 762–765.CrossRefGoogle Scholar
  113. Rocklöv, J., Quam, M., et al. (2015). Climate and health country profiles – Brazil – 2015. Geneva, Switzerland: World Health Organization.Google Scholar
  114. Rohani, A., Wong, Y. C., Zamre, I., Lee, H. L., & Zurainee, M. N. (2009). The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). The Southeast Asian Journal of Tropical Medicine and Public Health, 40, 942–950.Google Scholar
  115. Rossi, F. A., Krüger, E. L., & Bröde, P. (2012). Definição de faixas de conforto e desconforto térmico para espaços abertos em Curitiba, PR, com índice UTCI. Ambiente construído, 12(1), 41–59.CrossRefGoogle Scholar
  116. Sarkar, U., Nascimento, S. F., Barbosa, R., Martins, R., Nuevo, H., Kalafanos, I., et al. (2002). Population-based case-control investigation of risk factors for leptospirosis during an urban epidemic. American Journal of Tropical Medicine and Hygiene, 66(5), 605–610.CrossRefGoogle Scholar
  117. Sherwood, S. (2014). What is wet bulb temperatures? [Accessed Oct 2014]. Available at
  118. Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change due to heat stress. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9552–9555.CrossRefGoogle Scholar
  119. Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multi-model ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 118, 2473–2493.Google Scholar
  120. Silva, D. X., Barcellos, C., & Bacuri, R. (2010). Vulnerabilidade e efeitos das mudanças climáticas na saúde pública em Manaus. Project report on “Guidance for Conducting Assessments of Health Vulnerability and Public Health and Health Care Interventions to Address Climate Change”, funded by the Pan-American Health Organisation (Contract BR/CNT/0991502.001 of October 2009), 2010. [interned based document] [Accessed 11 Dec 2013]. Available at: _manaus_relat_final2_x_edit.pdf respiratórias
  121. Silveira-Neto, S., Nakano, O., Barbin, D., & Villa Nova, N. (1976). Manual de ecologia dos insetos (p. 419). São Paulo, Brazil: Agronômica Ceres.Google Scholar
  122. Sharovsky, R., César, L. A. M., & Ramires, J. A. F. (2004). Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil. Brazilian Journal of Medical and Biological Research, 37(11), 1651–1657CrossRefGoogle Scholar
  123. Smith, L. T., Aragão, L. E., Sabel, C. E., & Nakaya, T. (2014). Drought impacts on children’s respiratory health in the Brazilian Amazon. Scientific Reports, 16(4), 3726.Google Scholar
  124. Son, J. Y., Gouveia, N., Bravo, M. A., de Freitas, C. U., & Bell, M. L. (2016). The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. International Journal of Biometeorology, 60(1), 113–121.CrossRefGoogle Scholar
  125. Stefanon, M., D’Andrea, F., & Drobinski, P. (2012). Heatwave classification over Europe and the Mediterranean region. Environmental Research Letters, 7(1), 014023.CrossRefGoogle Scholar
  126. Universidade Federal de Santa Catarina (UFSC- CEPED). (2012). Centro Universitário de Estudos e Pesquisas sobre Desastres. Atlas brasileiro de desastres naturais 1991 a 2010: volume Brasil. Florianópolis: CEPED UFSC; 2012.Google Scholar
  127. USB and Society Report. (2016). Middle-class exposure: Locating and characterizing the global middle class. In Climate change: A risk to the global middle class. Exposure, vulnerability & economic impact Available: Google Scholar
  128. van Panhuis, W. G., Choisy, M., Xiong, X., Chok, N. S., Akarasewi, P., Iamsirithaworn, S., et al. (2015). Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 13069–13074.CrossRefGoogle Scholar
  129. Vanderlei, L. C. M., Silva, G. A. P., & Braga, J. U. (2003). Fatores de risco para internamento por diarreia aguda em menores de dois anos: estudo de caso-controle. Cadernos de Saúde Pública, 19(2), 455–463.CrossRefGoogle Scholar
  130. Veronesi, R., & Focaccia, R. (2004). Tratado de Infectologia (2nd ed.). São Paulo, Brazil: Atheneu.Google Scholar
  131. Watts, D. M., Burke, D. S., Harrison, B. A., Whitmire, R. E., & Nisalak, A. (1987). Effect of temperature on the vector efficiency of Aedes aegypti for dengue virus. The American Journal of Tropical Medicine and Hygiene, 36, 143–152.CrossRefGoogle Scholar
  132. World Bank. (2012). 4C: Turn down the heat. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics, November 2012, Washington DC 20433, 2012.Google Scholar
  133. World Health Organization(WHO). (2013). Global malaria programme. In: World Malaria Report. Geneva, 2013.Google Scholar
  134. World Health Organization (WHO). (2014). Quantitative risk assessment of the effects of climate change on selected causes of death, 2030s and 2050s. Geneva, World Health Organization, 2014.Google Scholar
  135. World Organization Health (WHO). (2015a). Climate and health country profiles – Brazil – . United Nations: Framework convention on climate change, 2015a.Google Scholar
  136. World Organization Health (WHO). (2015b). Heatwaves and heath: guidance on warning-system development. WMO-No. 1142, 2015b.Google Scholar
  137. Wu, J., Zhou, Y., Gao, Y., Fu, J. S., Johnson, B. A., Huang, C., et al. (2014). Estimation and uncertainty analysis of impacts of future heat waves on mortality in the eastern United States. Environmental Health Perspectives, 122(1), 10–16.CrossRefGoogle Scholar
  138. Xu, Z., Liu, Y., Ma, Z., Toloo, G. S., Hu, W., & Tong, S. (2014). Assessment of the temperature effect on childhood diarrhea using satellite imagery. Scientific Reports, 4, 5389.CrossRefGoogle Scholar
  139. Zanluca, C., Melo, V. C. A., Mosimann, A. L. P., Santos, G. I. V., Santos, C. N. D., & Luz, K. (2015 Jun). The first report of autochthonous transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz, 110(4), 569–572.CrossRefGoogle Scholar
  140. Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., et al. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2, 851–870.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Sandra de Souza Hacon
    • 1
  • Beatriz Fátima Alves de Oliveira
    • 1
  • Ismael Silveira
    • 1
    • 2
  1. 1.National Public Health School at the Oswaldo Cruz Foundation (FIOCRUZ)Rio de JaneiroBrazil
  2. 2.Institute of Social Medicine at the University of the State of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations