Advertisement

Assessments and How an Increase in Temperature may Have an Impact on Agriculture in Brazil and Mapping of the Current and Future Situation

  • Eduardo Delgado Assad
  • Rodrigo Rudge Ramos Ribeiro
  • Alan Massaru Nakai
Chapter

Abstract

Tthe possible impacts of climate change in the vulnerability of agricultural production will be analysed considering a increase in temperature of 3 °C or more until the end of the century. In order to analyse agricultural production it is important to remember that the study of the effects of the increase in temperature, should also be done together with other factors like for instance, water availability and the increase of CO2concentration. The potential risks imposed by climate change to Brazilian agriculture justify investments in farming research, particularly in the genetic modification of crops. In addition, studies to quantify the nature of extreme events, for periods between 2050 and 2011 have to be conducted. Technological advances in the management of crops and the adoption of good farming practices may also minimise impacts expected. The importance of developing crops tolerant to higher temperatures and water deficit is emphasized. With temperature increasing over 4 °C, impacts suffered will be strong at magnitudes not yet known by science. The main conclusion is that in terms of food supply, temperature rises above 4 °C place Brazil in a very vulnerable situation, compromising its current role of the future’s main player in relation to providing food to the world.

References

  1. Araújo, P. H. C., Silva, F. F., Gomes, M. F. M., Féres, J. G., & Braga, M. J. (2014). Uma análise do impacto das mudanças climáticas na produtividade agrícola da região Nordeste do Brasil. Rev. Econ. NE, Fortaleza, 45(3), 46–57.Google Scholar
  2. Assad, E. D., Marin, F. R., Valdivia, R. O., & Rosenzweig, C. (2015). AgMIP regional activities in a global framework: The Brazil experience. In a Global framework: The Brazil experience, AgMIP regional activities. In C. Rosenzweig & D. Hillel (Eds.), Handbook of climate change and agroecosystems: The agricultural model intercomparison and improvement project (AgMIP) Integrated crop and economic assessments, Part 2, ICP Series on Climate Change Impacts, Adaptation and Mitigation (Vol. 3, pp. 355–374). London: Imperial College Press.  https://doi.org/10.1142/9781783265640_0023 CrossRefGoogle Scholar
  3. Assad, E. D., Martins, S. M., de M Beltrão, N. E., & Pinto, H. S. (2013). Impacts of climate change on the agricultural zoning of climate risk for cotton cultivation in Brazil. Pesquisa Agropecuária Brasileira, 48(1), 1–8.  https://doi.org/10.1590/S0100-204X2013000100001 CrossRefGoogle Scholar
  4. Assad, E. D., Oliveira, A. F., Nakai, A. M., Pavão, E., J Monteiro, J. E., & Pellegrino, G. Q. (2016). Impactos e vulnerabilidades da agricultura brasileira as mudanças climáticas. In Modelagem climática e vulnerabilidades setoriais à mudança clima no Brasil (Vol. 4, pp. 127–188). Brasil: MCTIC.Google Scholar
  5. Assad, E. D., Pinto, H. S., Junior, J. Z., & Ávila, A. M. H. (2004). Impacto das mudanças climáticas no zoneamento agroclimático do café no Brasil. Pesquisa Agropecuária Brasileira, 39(11), 1057–1064.CrossRefGoogle Scholar
  6. Assad, E. D., Pinto, H. S., Zullo Junior, J., Marin, F. R., & Pellegrino, G. Q. (2008). Mudanças climáticas e a produção de grãos no Brasil: avaliação dos possíveis impactos. Plenarium, 5(5), 96–117.Google Scholar
  7. Avila, A. M. H. (2007). Uma Síntese do Quarto Relatório do IPCC. Revista Multiciência, Campinas, Edition n° 8, Mudanças Climáticas.Google Scholar
  8. Carter, T. R. (2013). Agricultural impacts: Multi-model yield projections. Nature Climate Change, 3, 784–786.CrossRefGoogle Scholar
  9. Centurion, M. A. P. C., & Ghini, R. (2011). Impacto potencial das mudanças climáticas sobre as doenças e desenvolvimento da soja no Brasil. In R. Ghini, E. Hamada, & W. Bettiol (Eds.), Impactos das mudanças climáticas sobre doenças de importantes culturas no Brasil. Jaguariúna, Brazil: Embrapa Meio Ambiente.Google Scholar
  10. Cervantes-Godoy, D., & Dewbre, J. (2010).Economic importance of agriculture for poverty reduction. OECD food, agriculture and fisheries working papers, n° 23, OECD Publishing. doi:  https://doi.org/10.1787/5kmmv9s20944-en.
  11. Chevarria, V. V., Del Ponte, E. M., Jahnke, S. M., & Hamada, E. (2012). Mapeamento da severidade da ferrugem asiática da soja na região sul do Brasil em cenários de clima atual e futuro. In Workshop sobre Mudanças Climáticas e Problemas Fitossanitários, Jaguariúna. Anais. Jaguariúna, Brazil: Embrapa Meio Ambiente http://www.alice.cnptia.embrapa.br/handle/doc/951451 Google Scholar
  12. Costa, L. C., Justino, F., Oliveira, L. J. C., Sediyama, G. C., Ferreira, W. P. M., & Lemos, C. F. (2009). Potential forcing of CO2, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in Southeast Brazil. Environmental Research Letters, 4 014013, 10.CrossRefGoogle Scholar
  13. Da Mattaa, F. M., Grandisb, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43(7), 1814–1823 Climate Change and Food Science. http://www.sciencedirect.com/science/article/pii/S0963996909003421 CrossRefGoogle Scholar
  14. Embrapa CNPTIA. (2015). Laboratório de Modelagem Ambiental. http://ainfo.cnptia.embrapa.br
  15. Evangelista, B. A., Marin, F. R., & Junior, J. Z. (2009). Impacto das mudanças climáticas sobre a produção de cana-de-açúcar no Estado de Goiás. Presented at the 16th Brazilian congress of Agrometeorology - 22–25 September 2009, Belo Horizonte, Minas Gerais.Google Scholar
  16. FAO. 2016. Climate change and food security: Risks and responses., 88 pgs. www.fao.org/3/a-i5188e.pdf
  17. Farias, J. R. B., Nepomuceno, A. L., & Neumaier, N. (2007). Ecofisiologia da soja. Circular Técnica, Embrapa 48, pp. 9. ISSN: 1516-7860. https://www.embrapa.br/soja/busca-de-publicacoes/-/publicacao/470308/ecofisiologia-da-soja
  18. Fernandes, E. C. M., Soliman, A., Confalonieri, R., Donatelli, M., & Tubiello, F. (2012). Climate change and agriculture in Latin America, 2020–2050: Projected impacts and response to adaptation strategies. Washington, DC: World Bank https://openknowledge.worldbank.org/handle/10986/12582 Google Scholar
  19. Fgv-GVces. (2013). Diagnóstico preliminar das principais informações sobre projeções climáticas e socioeconômicas, impactos e vulnerabilidades disponíveis em trabalhos e projetos dos atores mapeados. FGV, Centro de Estudos de Sustentabilidade.Google Scholar
  20. FIESP. (2017). Outlook Fiesp, projeções para o agronegócio Brasileiro 2027, Federação das industrias do Estado de São Paulo- SP-FIESP-2017, 86.p, ISBN:978-85-7201-029-0.Google Scholar
  21. Ghini, R., Hamada, E., Pedro Júnior, M. J., Marengo, J. A., & Gonçalves, R. R. V. (2008). Risk analysis of climate change on coffee nematodes and leafminer in Brazil. Pesquisa Agropecuária Brasileira, 43(2), 187–194 Embrapa Meio Ambiente.CrossRefGoogle Scholar
  22. Hertel, W. T., Burke, M. B., & Lobell, D. B. (2010). The poverty implications of climate-induced crop yield changes by 2030. GTAP working paper no. 59.Google Scholar
  23. Hertel, W. T., Verma, M., Ivanic, M., Magalhães, E., Ludena, C., & Rios, A. R. (2015). GTAP-POV: A framework for assessing the National Poverty Impacts of global economic and environmental change. GTAP technical paper no. 31.Google Scholar
  24. Intergovernmental Panel Of Climate Change (IPCC). (2007). The physical science basis: summary for policymakers. Geneva: IPCC, 2007. 18p. Available at: <http://www.ipcc.ch/publications_and_data/ar4/wg1/en/spmsspm-projections-of.html>. Accessed on: 03 Sep 2015.
  25. IPCC. (2001). In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson (Eds.), Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (p. 881). Cambridge, UK and New York: Cambridge University Press.Google Scholar
  26. IPCC. (2014a). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151.Google Scholar
  27. IPCC. (2014b). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 1–32). Cambridge, UK and New York: Cambridge University Press.Google Scholar
  28. Junior, J. Z., Pinto, H. S., & Assad, E. D. (2006). Impact assessment study of climate change on agricultural zoning. Meteorol. Appl. (Supplement), 13, 69–80.  https://doi.org/10.1017/S135048270600257X CrossRefGoogle Scholar
  29. Krishnan, P., Swain, B., ChandraBhaskar, B., Nayak, S. K., & Dash, R. N. (2007). Impact of elevated CO2 and temperature on Rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment, 122, 233–242.  https://doi.org/10.1016/j.agee.2007.01.019 CrossRefGoogle Scholar
  30. Lopes, C. A., Silva, G. O., Cruz, E. M., Assad, E., & Pereira, A. S. (2011). Uma análise do efeito do aquecimento global na produção de batata no Brasil. Horticultura Brasileira, 29, 7–15.CrossRefGoogle Scholar
  31. Margulis, S., & Dubeux, C. B. S. (2010). Economia da Mudança do Clima no Brasil: Custos e Oportunidades /editado; coordenador geral Jacques Marcovitch. São Paulo: IBEP Gráfica (p. 82). https://www.scribd.com/fullscreen/34595160?access_key=key-o7i2sr431843t6irzyp Google Scholar
  32. Monteiro, J. E. B. A. (2009). Organizador. Agrometeorologia dos cultivos: O fator meteorológico na produção agrícola (p. 530). Brasília D.F., Brazil: INMET ISSN 978-85-52817-00-7.Google Scholar
  33. OECD. (2015). Air and GHG emissions (indicator). doi:  https://doi.org/10.1787/93d10cf7-en. Accessed on: 04 Dec 2015.
  34. Pinto, H. S., Assad, E. D., Junior, J. Z., Evangelista, S. R. M., Otavian, A. F., Ávlia, A. M. H., et al. (2008). Aquecimento global e a nova geografia da produção agrícola no Brasil. São Paulo, Brazil: Embrapa.Google Scholar
  35. Pinto, N. F. J. A., Oliveira, E., & Fernande, F. T. (2008). Impacto potencial das mudanças climáticas sobre as doenças de milho no Brasil. In R. Ghini & E. Hamada (Eds.), Mudanças climáticas: impacto sobre doenças de plantas no Brasil (pp. 141–158). Brasília, DF, Brazil and Jaguariúna, Brazil: Embrapa Informação Tecnológica and Embrapa Meio Ambiente. isbn:978-85-7383-427-7.Google Scholar
  36. Porter, J. R., Montesino, M., & Semenov, M. (2015). The risk of climate change for crop production. In D. King, D. Schrag, Z. Dadi, Q. Ye, & A. Ghosh (Eds.), Climate change: A risk assessment. London: Foreign & Commonwealth Office.Google Scholar
  37. Porto de Carvalho, J. R., Assad, E. D., & Pinto, H. S. (2011). Kalman filter and correction of the temperatures estimated by PRECIS model. Atmospheric Research, 102, 218–226.CrossRefGoogle Scholar
  38. Prabhu, A. S., da Silva, S. C., & de Filippi, M. C. (2008). Impacto potencial das mudanças climáticas sobre as doenças de arroz no Brasil. In R. Ghini & E. Hamada (Eds.), Mudanças climáticas: impacto sobre doenças de plantas no Brasil (pp. 141–158). Brasília, DF, Brazil and Jaguariúna, Brazil: Embrapa Informação Tecnológica and Embrapa Meio Ambiente. isbn:978-85-7383-427-7.Google Scholar
  39. Rocha, M. T. (2008). Muda o clima muda a agricultura. Revista Agrianual, Anuários Informa Economics FNP, pp. 11–13.Google Scholar
  40. Sentelhas, P. C., Battisti, R., Câmara, J. R. B., Farias, A. C., Hampf, A. C., & Nendel, C. (2015). Climate change and agriculture research paper. The soybean yield gap in Brazil – Magnitude, causes and possible solutions for sustainable production. Journal of Agricultural Science, 1–18. Cambridge University Press 2015.  https://doi.org/10.1017/S0021859615000313 CrossRefGoogle Scholar
  41. Silva, C. S., Heinemann, A. B., & Stone, L. F. (2014). Risco Climático para o Feijoeiro Conforme Aumento da Temperatura do Ar nos Estados de Goiás e Mato Grosso. Comunicado Técnico Embrapa 221: SSN 1678-961X, http://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1000526/1/Comtec221.pdf
  42. Silva, V. P. R., Oliveira, S. D., Santos, C. A. C., & Silva, M. T. (2013). Risco climático da cana-de-açúcar cultivada na região Nordeste do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(2), 180–189.CrossRefGoogle Scholar
  43. Streck, N. A., & Alberto, C. M. (2006). Estudo numérico do impacto da mudança climática sobre o rendimento de trigo, soja e milho. Pesquisa Agropecuária Brasileira, 41(9), 1351–1359.CrossRefGoogle Scholar
  44. Walter, L. C., Streck, N. A., Rosa, T. H., & Krüger, C. A. M. B. (2010). Mudança climática e seus efeitos na cultura do arroz. Ciência Rural, Santa Maria, v.40, n° 11, p. 2411–2418. ISSN 0103-8478.Google Scholar
  45. WEF. (2016). The global risks report 2016, 11th Edition. Published by the World Economic |Forum within the framework of the global competitiveness and risks team. REF: 080116.Google Scholar
  46. Zullo Jr., J., Pinto, H. S., Assad, E. D., & de Avila, A. M. H. (2011). Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Climatic Change, 1, 1573–1480.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Eduardo Delgado Assad
    • 1
  • Rodrigo Rudge Ramos Ribeiro
    • 1
  • Alan Massaru Nakai
    • 1
  1. 1.EmbrapaSão PauloBrazil

Personalised recommendations