Chile and the Salas y Gómez Ridge

  • Erin E. Easton
  • Matthias Gorny
  • Ariadna Mecho
  • Javier Sellanes
  • Carlos F. Gaymer
  • Heather L. Spalding
  • Jaime Aburto
Part of the Coral Reefs of the World book series (CORW, volume 12)


In Chile, light-dependent benthic taxa have been observed to ~280 m with the presence of zooxanthellate cnidarians forming mesophotic coral ecosystems (MCEs) to depths of at least 120 m at Rapa Nui (Easter Island) and Salas y Gómez. Evidence from dredge samples suggests MCEs in the southeast Pacific once extended along the Salas y Gómez Ridge as far east as ~85° W, but MCEs in Chile were virtually unexplored prior to 2010. Despite providing critical structural habitat for numerous flora and fauna, including commercially important fishes, basic information about their geographic distribution and community structure are lacking. Here, we review the state of knowledge on these communities and present preliminary results from the most recent surveys at Rapa Nui. Surveys at mesophotic depths (30–280 m) have revealed ecosystems dominated by crustose coralline algae with occasional patches of rhodoliths, undiscovered biodiversity, the first reports of wide-ranging Pacific species, and reports of potential new species in multiple taxa including fishes and echinoderms. Preliminary observations suggest fish communities change with depth and time of day, some habitats support commercially important and juvenile fishes, and MCEs and fisheries at Rapa Nui are in decline due to local, artisanal fishing practices. The recent designation of no-take marine parks in Chile may help to conserve these habitats, but additional information is required to support management decisions and future conservation efforts at Rapa Nui, Salas y Gómez, and seamounts within the Chilean Exclusive Economic Zone.


Mesophotic coral ecosystems Easter Island Ecoregion South Pacific Community structure Seamounts 



This work was financed by the Chilean Millennium Initiative ESMOI, Oceana Chile, the postdoctoral Fondecyt N° 3160195 grant to JA, Fondecyt N° 1181153 to JS, and the Chilean National Oceanographic Committee grant C22 16-09.


  1. Aburto JA, Gaymer CF, Cundill G (2017) Towards local governance of marine resources and ecosystems on Easter Island. Aquat Conserv 27(2):353–371CrossRefGoogle Scholar
  2. Allison EC, Durham JW, Mintz LW (1967) New southeast Pacific echinoids. Occas Pap Calif Acad Sci 62:1–23Google Scholar
  3. Alvarado JJ, Aburto-Oropeza O, Abad R, Barraza E, Brandt M, Cantera J, Estrada P, Gaymer CF, Guzmán-Mora AG, Herlan JJ, Maté JL (2017) Coral reef conservation in the eastern tropical Pacific. In: Coral reefs of the eastern tropical Pacific. Springer, pp 565–591Google Scholar
  4. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB, Pereira-Filho GH, Abrantes DP, Brasileiro PS, Bahia RG, Leal RN, Kaufman L, Kleypas JA, Farina M, Thompson FL (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7(4):e35171PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andrade I, Hormazábal S, Correa-Ramírez M (2014) Time-space variability of satellite chlorophyll-a in the Easter Island Province, southeastern Pacific Ocean. Lat Am J Aquat Res 42(4):871–887CrossRefGoogle Scholar
  6. Appeldoorn R, Ballantine D, Bejarano I, Carlo M, Nemeth M, Otero E, Pagan F, Ruiz H, Schizas N, Sherman C, Weil E (2016) Mesophotic coral ecosystems under anthropogenic stress: a case study at Ponce, Puerto Rico. Coral Reefs 35(1):63–75CrossRefGoogle Scholar
  7. Araya JF, Osorio C (2015) Pinna rapanui n. sp. (Bivalvia: Pinnidae): the largest bivalve species from Easter Island, South Pacific Ocean, Chile. Pac Sci 70(1):83–90CrossRefGoogle Scholar
  8. Boyko CB (2003) The endemic marine invertebrates of Easter Island: how many species and for how long? In: Loret J, Tanacredi JT (eds) Easter Island: scientific exploration into the world’s environmental problems in microcosm. Springer, New York, pp 155–175CrossRefGoogle Scholar
  9. Bridge T, Fabricius K, Bongaerts P, Wallace C, Muir P, Done T, Webster J (2012) Diversity of Scleractinia and Octocorallia in the mesophotic zone of the Great Barrier Reef, Australia. Coral Reefs 31(1):179–189CrossRefGoogle Scholar
  10. Claustre H, Huot Y, Obernosterer I, Gentili B, Tailliez D, Lewis M (2007) Gross community production and metabolic balance in the South Pacific Gyre, using a non-intrusive bio-optical method. Biogeosci Discuss 4:3089–3121CrossRefGoogle Scholar
  11. Coles SL, Fadlallah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9(4):231–237CrossRefGoogle Scholar
  12. Cornejo D’Ottone M, Bravo L, Ramos M, Pizarro O, Karstensen J, Gallegos M, Correa-Ramirez M, Silva N, Farias L, Karp-Boss L (2016) Biogeochemical characteristics of a long-lived anticyclonic eddy in the eastern South Pacific Ocean. Biogeosciences 13(10):2971–2979CrossRefGoogle Scholar
  13. DiSalvo LH, Randall JE, Cea A (1988) Ecological reconnaissance of the Easter Island sublittoral marine environment. Natl Geogr Res 4(4):451–473Google Scholar
  14. Easton EE, Sellanes J, Gaymer CF, Morales N, Gorny M, Berkenpas E (2017) Diversity of deep-sea fishes of the Easter Island Ecoregion. Deep-Sea Res II Top Stud Oceanogr 137:78–88CrossRefGoogle Scholar
  15. Easton EE, Sellanes J, Gorny M (2018) First record of the yellowfin soldierfish, Myripristis chryseres Jordan and Evermann 1903 (Beryciformes: Holocentridae), in the Easter Island Ecoregion. Pac Sci 72(1):143–148CrossRefGoogle Scholar
  16. Fell F (1974) The echinoids of Easter Island (Rapa Nui). Pac Sci 28(2):147–158Google Scholar
  17. Fernández M, Pappalardo P, Rodríguez-Ruiz MC, Castilla JC (2014) Synthesis of the state of knowledge about species richness of macroalgae, macroinvertebrates and fishes in coastal and oceanic waters of Easter and Salas y Gómez islands. Lat Am J Aquat Res 42(4):760–802CrossRefGoogle Scholar
  18. Foster MS (2001) Rhodoliths: between rocks and soft places. J Phycol 37(5):659–667CrossRefGoogle Scholar
  19. Friedlander AM, Ballesteros E, Beets J, Berkenpas E, Gaymer CF, Gorny M, Sala E (2013) Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile. Aquat Conserv 23(4):515–531CrossRefGoogle Scholar
  20. Gálvez Herrera Ó, Huidobro Marin C (2017) Una nueva especie de Caecum Fleming, 1813 para Isla de Pascua, Chile (Mollusca: Caecidae). Bol Mus Nac Hist Nat Chile 66(1):125–128Google Scholar
  21. Gaymer CF, Dumont C, Garay-Flümann R, Sfeir R, Perez E, Luna-Jorquera G, Stotz W, Vásquez J, Moraga J, Berríos M (2007) Diagnóstico implementación reserva marina Isla Choros, La Higuera. Informe de avance – Etapa I: diagnóstico situación sector de Punta Choros, Recopilación de información y elaboración de diagnóstico, CODIGO BIP:30006824. 295 ppGoogle Scholar
  22. Gaymer CF, Stotz W, Garay-Flümann R, Bórquez R, Luna-Jorquera G, Ramos M, Moraga J, Bodini A, Rojas-Nazar U (2008) Evaluación de línea base de las reservas marinas “Isla Chañaral” e “Isla Choros-Damas.” Inf Final Proyecto FIP, 2006–56. 532 ppGoogle Scholar
  23. Gaymer CF, Stadel AV, Ban NC, Francisco Cárcamo P, Ierna J Jr, Lieberknecht LM (2014) Merging top-down and bottom-up approaches in marine protected areas planning: experiences from around the globe. Aquat Conserv Mar Freshw Ecosyst 24(S2):128–144CrossRefGoogle Scholar
  24. Gaymer CF, Garay-Flühmann R, Sfeir R, Vega C, Luna-Jorquera G, Petit I, Wilhelm TA, Friedlander AM (2017) Plan general de administración y su Valoración Económica. Informe final proyecto FIPA 2016–31: “Bases técnicas para la gestión del Parque Marino Nazca – Desventuradas y propuesta de plan general de administración.” 207 ppGoogle Scholar
  25. Glynn PW, Wellington GM, Wieters EA, Navarrete SA (2003) Reef-building coral communities of Easter Island (Rapa Nui), Chile. In: Latin American coral reefs. Elsevier, Amsterdam, pp 473–494CrossRefGoogle Scholar
  26. Glynn PW, Wellington GM, Riegl B, Olson DB, Borneman E, Wieters EA (2007) Diversity and biogeography of the scleractinian coral fauna of Easter Island (Rapa Nui). Pac Sci 61(1):67–90CrossRefGoogle Scholar
  27. Glynn PW, Alvarado JJ, Banks S, Cortés J, Feingold JS, Jiménez C, Maragos JE, Martínez P, Maté JL, Moanga DA (2017) Eastern Pacific coral reef provinces, coral community structure and composition: an overview. In: Coral reefs of the eastern tropical Pacific. Springer, pp 107–176Google Scholar
  28. Gorny M, Easton EE, Sellanes J (2018) First record of black corals (Antipatharia) in shallow coastal waters of northern Chile by means of underwater video. Lat Am J Aquat Res 46(2):457–460CrossRefGoogle Scholar
  29. Haase KM, Mertz DF, Sharp WS, Garbe-Schönberg CD (2000) Sr-Nd-Pb isotope ratios, geochemical compositions, and 40Ar/39Ar data of lavas from San Felix Island (Southeast Pacific): implications for magma genesis and sources. Terra Nova 12(2):90–96CrossRefGoogle Scholar
  30. Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic Coral Ecosystems: characterization, ecology, and management.” Coral Reefs 29(2):247–251CrossRefGoogle Scholar
  31. Hoeksema B, Sellanes J, Easton E (2019) A high-latitude, mesophotic Cycloseris field at 85 m depth off Rapa Nui (Easter Island). Bull Mar Sci 95(1):101–102CrossRefGoogle Scholar
  32. Holte J, Straneo F, Moffat C, Weller R, Farrar JT (2013) Structure and surface properties of eddies in the southeast Pacific Ocean. J Geophys Res Oceans 118(5):2295–2309CrossRefGoogle Scholar
  33. Kahng S, García-Sais J, Spalding H, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen R (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29(2):255–275CrossRefGoogle Scholar
  34. Kahng S, Copus J, Wagner D (2014) Recent advances in the ecology of mesophotic coral ecosystems. Curr Opin Environ Sustain 7:72–81CrossRefGoogle Scholar
  35. Kane C, Kosaki RK, Wagner D (2014) High levels of mesophotic reef fish endemism in the Northwestern Hawaiian Islands. Bull Mar Sci 90(2):693–703CrossRefGoogle Scholar
  36. Kosaki RK, Pyle RL, Leonard JC, Hauk BB, Whitton RK, Wagner D (2016) 100% endemism in mesophotic reef fish assemblages at Kure Atoll, Hawaiian Islands. Mar Biodivers 47(3):783–784CrossRefGoogle Scholar
  37. Larraín A (1995) Biodiversidad de equinodermos chilenos: estado actual del conocimiento y sinopsis biosistemática. Gayana Zool 59:73–96Google Scholar
  38. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375(1):1–8CrossRefGoogle Scholar
  39. Liddell W, Avery W, Ohlhorst S (1997) Patterns of benthic community structure, 10–250 m, the Bahamas. In: 8th International Coral Reef Symposium, pp 437–442Google Scholar
  40. Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227(4682):57–59PubMedCrossRefGoogle Scholar
  41. Locker S, Armstrong R, Battista T, Rooney J, Sherman C, Zawada D (2010) Geomorphology of mesophotic coral ecosystems: current perspectives on morphology, distribution, and mapping strategies. Coral Reefs 29(2):329–345CrossRefGoogle Scholar
  42. National Geographic, Oceana (2013) Islas Desventuradas: Biodiversidad marina y propuesta de conservación. Informe de la expedición “Pristine Seas.” 62 ppGoogle Scholar
  43. Parin N, Mironov A, Nesis K (1997) Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. Adv Mar Biol 32:145–242CrossRefGoogle Scholar
  44. Puglise K, Hinderstein L, Marr J, Dowgiallo M, Martinez F (2009) Mesophotic coral ecosystems research strategy: international workshop to prioritize research and management needs for mesophotic coral ecosystems, Jupiter, Florida, 12–15 July 2008. NOAA Technical Memorandum NOS NCCOS 98 and OAR OER 2, 24 pGoogle Scholar
  45. Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Technol Soc J 34(4):82–91CrossRefGoogle Scholar
  46. Pyle RL (2019) Advanced technical diving. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 959–972CrossRefGoogle Scholar
  47. Pyle RL, Boland R, Bolick H, Bowen BW, Bradley CJ, Kane C, Kosaki RK, Langston R, Longenecker K, Montgomery A, Parrish FA, Popp BN, Rooney J, Smith CM, Wagner D, Spalding HL (2016) A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4:e2475PubMedPubMedCentralCrossRefGoogle Scholar
  48. Raines BK (2002) Contributions to the knowledge of Easter Island Mollusca. La Conchiglia 34(304):11–40Google Scholar
  49. Raines BK (2007) New molluscan records from Easter Island, with the description of a new Ethminolia. Visaya 2(1):70–90Google Scholar
  50. Raines B, Huber M (2012) Biodiversity quadrupled—revision of Easter Island and Salas y Gómez bivalves. Zootaxa 3217:1–106CrossRefGoogle Scholar
  51. Ras J, Claustre H, Uitz J (2008) Spatial variability of phytoplankton pigment distributions in the Subtropical South Pacific Ocean: comparison between in situ and predicted data. Biogeosciences 5(2):353–369CrossRefGoogle Scholar
  52. Ray JS, Mahoney JJ, Duncan RA, Ray J, Wessel P, Naar DF (2012) Chronology and geochemistry of lavas from the Nazca Ridge and Easter Seamount Chain: an ~30 Myr hotspot record. J Petrol 53(7):1417–1448CrossRefGoogle Scholar
  53. Rehder HA (1980) The marine mollusks of Easter Island (Isla de Pascua) and Sala y Gómez. Smithsonian Institution Press, Washington, DCCrossRefGoogle Scholar
  54. Rodrigo C, Díaz J, González-Fernández A (2014) Origin of the Easter Submarine Alignment: morphology and structural lineaments. Lat Am J Aquat Res 42:857–870CrossRefGoogle Scholar
  55. Santelices B, Abbott I (1987) Geographic and marine isolation: an assessment of the marine algae of Easter Island. Pac Sci 41(1–4):1–20Google Scholar
  56. Spalding HL (2012) Ecology of mesophotic macroalgae and Halimeda kanaloana meadows in the main Hawaiian Islands. Dissertation, University of Hawaiʻi at MānoaGoogle Scholar
  57. Spalding HL, Conklin KY, Smith CM, O’Kelly CJ, Sherwood AR (2016) New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago. J Phycol 52(1):40–53PubMedPubMedCentralCrossRefGoogle Scholar
  58. Spalding HL, Amado-Filho GM, Bahia RG, Ballantine DL, Fredericq S, Leichter JJ, Nelson WA, Slattery M, Tsuda RT (2019) Macroalgae. In: Loya Y, Puglise KA, Bridge TCL (eds) Mesophotic coral ecosystems. Springer, New York, pp 507–536Google Scholar
  59. Thiel M, Macaya EC, Acuña E, Arntz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortés M, Dumont CP, Escribano R, Fernandez M, Gajardo JA, Gaymer CF, Gomez I, González AE, González HE, Haye PA, Illanes J-E, Iriarte JL, Lancellottii DA, Luna-Jorquera G, Luxoro C, Manriquez PH, Marín V, Muñoz P, Navarrete SA, Perez E, Poulin E, Sellanes J, Sepúlveda HH, Stotz W, Tala F, Thomas A, Vargas CA, Vasquez JA, Vega JMA (2007) The Humboldt Current System of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol 45:195–344CrossRefGoogle Scholar
  60. Toonen RJ, Wilhelm TA, Maxwell SM, Wagner D, Bowen BW, Sheppard CR, Taei SM, Teroroko T, Moffitt R, Gaymer CF (2013) One size does not fit all: the emerging frontier in large-scale marine conservation. Mar Pollut Bull 77(1):7–10PubMedCrossRefGoogle Scholar
  61. Veron J, Stafford-Smith M, DeVantier L, Turak E (2015) Overview of distribution patterns of zooxanthellate Scleractinia. Front Mar Sci 1:81CrossRefGoogle Scholar
  62. Vezzoli L, Acocella V (2009) Easter Island, SE Pacific: an end-member type of hotspot volcanism. Geol Soc Am Bull 121(5–6):869–886CrossRefGoogle Scholar
  63. von Dassow P, Collado-Fabbri S (2014) Biological oceanography, biogeochemical cycles, and pelagic ecosystem functioning of the east-central South Pacific Gyre: focus on Easter Island and Salas-y-Gómez Island. Lat Am J Aquat Res 42(4):703–742CrossRefGoogle Scholar
  64. Wilhelm TA, Sheppard CRC, Sheppard ALS, Gaymer CF, Parks J, Wagner D, Na L (2014) Large marine protected areas – advantages and challenges of going big. Aquat Conserv Mar Freshw Ecosyst 24(S2):24–30CrossRefGoogle Scholar
  65. Yamano H, Hori K, Yamauchi M, Yamagawa O, Ohmura A (2001) Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20(1):9–12CrossRefGoogle Scholar
  66. Yañez E, Silva C, Vega R, Espindola F, Alvarez L, Silva N, Palma S, Salinas S, Menschel E, Haeussermann V, Soto D, Ramirez N (2009) Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts, Chile. Lat Am J Aquat Res 37:555–570CrossRefGoogle Scholar
  67. Yáñez E, Silva C, Barbieri M, Trujillo H (2014) Socio-ecological analysis of the artisanal fishing system on Easter Island. Lat Am J Aquat Res 42(4):803–813CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erin E. Easton
    • 1
    • 2
  • Matthias Gorny
    • 3
  • Ariadna Mecho
    • 2
  • Javier Sellanes
    • 2
  • Carlos F. Gaymer
    • 2
  • Heather L. Spalding
    • 4
  • Jaime Aburto
    • 2
  1. 1.School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyBrownsvilleUSA
  2. 2.Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología MarinaUniversidad Católica del NorteCoquimboChile
  3. 3.Oceana ChileSantiagoChile
  4. 4.Department of BotanyUniversity of Hawaiʻi at MānoaHonoluluUSA

Personalised recommendations