Advertisement

Anti-angiogenesis

  • Domenico Ribatti
Chapter

Abstract

The existence of specific angiogenesis inhibitors was first postulated by Folkman in 1971 in an editorial (Folkman 1971). In this paper, Folkman wrote that: “it seems appropriate to speculate that ‘anti-angiogenesis’ may provide a form of cancer therapy worthy os serious exploration. One approach to the initiation of ‘anti-angiogenesis’ would be the production of an antibody against TAF; such an attempt is under way in our laboratory (…) Anti-angiogenesis may become a powerful adjunct to present methods of cancer therapy. If ‘anti-angiogenesis’ is not possible, or even if the concept is wrong, the careful exploration of its consequences may reveal something fundamental about the behavior of tumor cells growing in a packed population in vivo.” (Folkman 1971). Moreover: “It is tempting to suggest that tumor growth might be arrested at a very small size if the anti-angiogenesis activity of this factor could be blocked. This would be analogous to the cessation of growth of bacterial colonies when their size exceeds the diffusion of nutrients.” (Folkman et al. 1971).

References

  1. Abdollahi A, Hahnfeldt P, Maercker C et al (2004) Endostatin’s antiangiogenic signalling network. Mol Cell 13:649–663CrossRefPubMedGoogle Scholar
  2. Azizkhan RG, Azizkhan JC, Zetter BR et al (1980) Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 151:931–944CrossRefGoogle Scholar
  3. Barlogie B, Desikan R, Eddlemon P et al (2001) Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 98:492–494CrossRefPubMedGoogle Scholar
  4. Bergers G, Song S, Mayer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouck N (1992) Angiogenesis: a mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis. Cancer Treat Res 63:359–371CrossRefPubMedGoogle Scholar
  6. Brem H, Folkman J (1975) Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 141:427–439CrossRefPubMedGoogle Scholar
  7. Brouty-Boye D, Zetter BR (1980) Inhibition of cell motility by interferon. Science 208:516–518CrossRefPubMedGoogle Scholar
  8. Browder T, Butterfield CE, Kraling BM et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886PubMedGoogle Scholar
  9. Cao Y (2010) Angiogenesis: what can it offer for future medicine? Exp Cell Res 316:1304–1308CrossRefPubMedGoogle Scholar
  10. Cooke R (2001) Dr. Folkman’s war. Angiogenesis and the struggle to defeat cancer. Random House, New YorkGoogle Scholar
  11. Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1387CrossRefPubMedGoogle Scholar
  12. D’Amato RJ, Lin CM, Flynn E et al (1994a) 2-Methoxyestradiol, an endogenous mammalian metabolite, inhibits tubulin polymerization by interacting at the colchicine site. Proc Natl Acad Sci USA 91:3964–3968CrossRefPubMedGoogle Scholar
  13. D’Amato RJ, Loughnan MS, Flynn E et al (1994b) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085CrossRefPubMedGoogle Scholar
  14. Dameron KM, Volpert OV, Tainsky MA et al (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584CrossRefPubMedGoogle Scholar
  15. Dickson PV, Hagedorn NL, Hammer JB et al (2007a) Interferon beta-mediated vessel stabilization improves delivery and efficacy of systemically administered topotecan in a murine neuroblastoma model. J Pediatr Surg 42:160–165CrossRefPubMedGoogle Scholar
  16. Dickson PV, Hammer JB, Streck CJ et al (2007b) Continuous delivery of IFN-beta promotes sustained maturation of intratumoral vasculature. Mol Cancer Res 5:531–542CrossRefPubMedGoogle Scholar
  17. Eggert A, Ikegaki N, Kwiatkowski J et al (2000) High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6:1900–1908PubMedGoogle Scholar
  18. Eisenstein R, Sorgente N, Soble L et al (1973) The resistance of certain tissues to invasion: penetrability of explanted tissues by vascularized mesenchyme. Am J Pathol 73:765–774PubMedPubMedCentralGoogle Scholar
  19. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanved clear-cell renal-cell carcinoma. N Engl J Med 356:125–134CrossRefPubMedGoogle Scholar
  20. Ezekowitz RA, Mulliken JB, Folkman J (1992) Interferon alfa-2a therapy for lifethreatening hemangiomas of infancy. New Engl J Med 326:1456–1463CrossRefPubMedGoogle Scholar
  21. Faivre S, Demetri G, Sargent W et al (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745CrossRefPubMedGoogle Scholar
  22. Fan LC, Teng HW, Shiau CW et al (2016) Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer. Oncotarget 7:64136–64147PubMedPubMedCentralGoogle Scholar
  23. Folkman J (1971) Tumor angiogenesis. Therapeutic implications. N Engl J Med 285:1182–1186CrossRefPubMedPubMedCentralGoogle Scholar
  24. Folkman J (1985a) Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 29:10–36CrossRefPubMedGoogle Scholar
  25. Folkman J (1985b) Tumor angiogenesis. Adv Cancer Res 43:175–203CrossRefPubMedGoogle Scholar
  26. Folkman J (1998a) New directions in angiogenesis research (Abstr 031). 10th NCI-EORTC Symposium on New Drugs in Cancer Therapy, June 16–19, 1998, AmsterdamGoogle Scholar
  27. Folkman J (1998b) Antiangiogenic gene therapy. Proc Natl Acad Sci U S A 95:9064–9066CrossRefPubMedPubMedCentralGoogle Scholar
  28. Folkman J (2000) Incipient angiogenesis. J Natl Cancer Inst 22:94–95CrossRefPubMedGoogle Scholar
  29. Folkman J (2002a) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893CrossRefPubMedGoogle Scholar
  30. Folkman J (2002b) Discussion: antiangiogenic therapy with interferon alpha for giant lesions of the jaws. J Oral Maxillofac Surg 60:1111–1113CrossRefGoogle Scholar
  31. Folkman J (2002c) Looking for a good endothelial address. Cancer Cell 1:113–115CrossRefPubMedGoogle Scholar
  32. Folkman J (2006a) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res 312:594–607CrossRefPubMedGoogle Scholar
  33. Folkman J (2006b) Angiogenesis. Annu Rev Med 57:1–18CrossRefPubMedGoogle Scholar
  34. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discovery 6:273–286CrossRefPubMedGoogle Scholar
  35. Folkman J (2008) Tumor angiogenesis: from bench to bedside. In: Marmé D, Fusenig N (eds) Tumor angiogenesis. Basic mechanisms nad cancer therapy. Springer-Verlag, Heidelberg, pp 3–28Google Scholar
  36. Folkman J, Cotran R (1976) Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 16:207–248PubMedPubMedCentralGoogle Scholar
  37. Folkman J, Merler E, Abernathy C et al (1971) Isolation of a tumor fraction responsible for angiogenesis. J Exp Med 133:275–288CrossRefPubMedPubMedCentralGoogle Scholar
  38. Folkman J, Langer R, Linhartd R et al (1983a) Angiogenesis inhibition and tumor regression caused by heparin of a heparin fragment in the presence of cortisone. Science 221:719–725CrossRefPubMedGoogle Scholar
  39. Folkman J, Langer R, Linhardt R et al (1983b) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221:719–725CrossRefPubMedGoogle Scholar
  40. Fotsis T, Zhang Y, Pepper MS et al (1994) The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumor growth. Nature 368:237–239CrossRefPubMedGoogle Scholar
  41. Gragoudas ES, Adamis AP, Cunningham ET Jr et al (2004) Pegaptinib for neovascular age-related macular degeneration. New England J Med 351:2805–2816CrossRefGoogle Scholar
  42. Greinwald JH Jr, Burke DK, Bonthius DJ et al (1999) An update on the treatment of hemangiomas in children with interferon Alfa-2a. Arch Otolaryngol Head Neck Surg 125:21–27CrossRefPubMedGoogle Scholar
  43. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hanson FR, Eble TE (1949) An antiphage agent isolated from Aspergillus sp. J Bacteriol 58:527–529PubMedPubMedCentralGoogle Scholar
  45. Hauschild A, Dummer R, Ugurel S et al (2008) Combined treatment with pegylated interferon-a-2a and dacarbazine in patients with advanced metastatic melanoma. Cancer 113:1404–1411CrossRefPubMedGoogle Scholar
  46. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J med 350:2335–2342CrossRefPubMedGoogle Scholar
  47. Ingber DE, Madri JA, Folkman J (1986) A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119:1768–1775CrossRefPubMedGoogle Scholar
  48. Ingber D, Fujita T, Kishimoto S et al (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348:355–357CrossRefGoogle Scholar
  49. Izumi Y, Xu L, di Tommaso E et al (2002) Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416:279–280CrossRefPubMedGoogle Scholar
  50. Kaban LB, Mulliken JB, Ezekowitz RA et al (1999) Antiangiogenic therapy of a recurrent giant cell tumor of the mandible with interferon alfa-2a. Pediatrics 103:1145–1149CrossRefPubMedGoogle Scholar
  51. Kenyon BM, Browne F, D’Amato RJ (1997) Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 64:971–978CrossRefPubMedGoogle Scholar
  52. Kerbel RS (1991) Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. Bioessay 13:31–36CrossRefGoogle Scholar
  53. Kessler DA, Langer RS, Pless NA, Folkman J (1976) Mast cells and tumor angiogenesis. Int J Cancer 18:703–707CrossRefPubMedGoogle Scholar
  54. Kieran MW, Turner CD, Rubin SN et al (2005) A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 27:573–581CrossRefPubMedGoogle Scholar
  55. Kisker O, Becker CM, Prox D et al (2001) Continuous administration of endostatin by intraperitoneally implanted osmotic pump improved the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 61:7669–7674PubMedGoogle Scholar
  56. Klement G, Baruchel S, Rak J et al (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105:15–24CrossRefGoogle Scholar
  57. Konno H, Tanaka T, Kanai T et al (1996) Efficacy of an angiogenesis inhibitor, TNP-470, in xenotransplanted hyman colorectal cancer with high metatstatic potential. Cancer 77:1736–1740CrossRefPubMedGoogle Scholar
  58. Kusaka M, Sudo K, Fujita T et al (1991) Potent antiangiogenic action of AGM-1470: comparison to the fumagillin parent. Biochem Biophys Res Commun 174:1070–1076CrossRefPubMedGoogle Scholar
  59. Langer R, Conn H, Vacanti J et al (1980) Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc Natl Acad Sci U S A 77:4331–4335CrossRefPubMedPubMedCentralGoogle Scholar
  60. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib for advanced hepatocellular carcinoma. N engl J Med 359:378–390CrossRefPubMedGoogle Scholar
  61. Mabjeesh NJ, Escuin D, La Vallee TM et al (2003) 2ME inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:365–373CrossRefGoogle Scholar
  62. Maione TE, Gray GS, Petro J et al (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247:71–79CrossRefGoogle Scholar
  63. Mancuso MR, Davis R, Norberg SM et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621CrossRefPubMedPubMedCentralGoogle Scholar
  64. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J med 357:2666–2676CrossRefPubMedGoogle Scholar
  65. Moses MA, Sudhalter J, Langer R (1990) Identification of an inhibitory of neovascularization from cartilage. Science 248:1408–1410CrossRefPubMedGoogle Scholar
  66. Moses MA, Sudhalter J, Langer R (1992) Isolation and characterization of an inhibitory of eovascularization from scapular chondrocytes. J Cell Biol 119:475–482CrossRefPubMedGoogle Scholar
  67. Motzer RJ, Michaelson MD, Redman BG et al (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelia growth and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24CrossRefPubMedGoogle Scholar
  68. Murray JB, Allison K, Sudhalter J et al (1986) Purification and partial amino acid sequence of a bovine cartilage-derived collagenase inhibitor. J Biol Chem 261:4154–4159PubMedGoogle Scholar
  69. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979CrossRefPubMedGoogle Scholar
  70. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastasis by a Lewis lung carcinoma. Cell 79:315–328CrossRefGoogle Scholar
  71. O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustain dormancy of human primary tumors in mice. Nat Med 2:689–692CrossRefPubMedGoogle Scholar
  72. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285CrossRefGoogle Scholar
  73. O’Reilly MS, Pirie-Shepherd S, Lane WS et al (1999) Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285:1926–1928CrossRefPubMedGoogle Scholar
  74. Rastinejad F, Polverini PJ, Bouck NP (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355CrossRefPubMedGoogle Scholar
  75. Raver KS, Dixon SC, Figg WD (1998) Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species dependent. Biochem Pharmacol 55:1827–1834CrossRefGoogle Scholar
  76. Relf M, Le Jeune S, Fox S et al (1997) Expression of the angiogenic factors vascular endothelial growth factor acidic and basic fibroblast growth factor, transforming growth factor-1, platelet-derived endothelial growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969PubMedGoogle Scholar
  77. Ribatti D, Vacca A (2005) Therapeutic renaissance of thalidomide in the treatement of haematological malignancies. Leukemia 19:1525–1531CrossRefPubMedGoogle Scholar
  78. Satchi-Fainaro R, Puder M, Davies JW et al (2004) Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 10:255–261CrossRefPubMedGoogle Scholar
  79. Satchi-Fainaro R, Mamluk R, Wang L et al (2005) Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7:251–261CrossRefPubMedGoogle Scholar
  80. Sharpe RJ, Byers HR, Scott CF et al (1990) Growth inihibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J Natl Cancer Inst 82:848–853CrossRefPubMedGoogle Scholar
  81. Shingal S, Metha J, Desikan R et al (1999) Antitumor activity of thalidomide in refractory multiple myeloma. New Engl J Med 341:1565–1571CrossRefGoogle Scholar
  82. Singh RK et al (1995) Interferons α and β down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci U S A 92:4562–4566CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sorgente N, Kuettner KE, Soble LW et al (1975) The resistance of certain tissues to invasion. II Evidence for extractable factors in cartilage which inhibit invasion by vascularized mesenchyme. Lab Invest 32:217–222PubMedGoogle Scholar
  84. Taylor S, Folkman J (1972) Protamine is an inhibitor of angiogenesis. Nature 297:307–312CrossRefGoogle Scholar
  85. Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297:307–312CrossRefPubMedGoogle Scholar
  86. Vacca A, Scavelli C, Montefusco et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 26:5334–5346CrossRefGoogle Scholar
  87. Verheul HM, Panigrahy D, Yuan J et al (1999) Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Brit J Cancer 79:114–118CrossRefPubMedGoogle Scholar
  88. White CW, Sondheimer HM, Crouch EC et al (1989) Treatment of pulmonary hemangiomatosis with recombinant interferon alfa-2. N Engl J Med 320:1197–1200CrossRefPubMedGoogle Scholar
  89. Yamaoka M, Yamamoto T, Ikeyama S et al (1993) Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res 53:5233–5236PubMedGoogle Scholar
  90. Yanase T, Tamura M, Fujita K et al (1993) Inhibitort effect of angiogenesis inhibitor TNP-470 on tumor growth and metastasis of human cell lines in vitro and in vivo. Cancer Res 53:2566–2570PubMedGoogle Scholar
  91. Zetter BR (2008) The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer 8:647–654CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Domenico Ribatti
    • 1
  1. 1.Department of Basic Medical Sciences, Neurosciences and Sensory OrgansUniversity of Bari Medical SchoolBariItaly

Personalised recommendations