Advertisement

Introduction to Iris Presentation Attack Detection

  • Aythami Morales
  • Julian Fierrez
  • Javier Galbally
  • Marta Gomez-Barrero
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

Iris recognition technology has attracted an increasing interest since more than two decades in which we have witnessed a migration from laboratories to real-world applications. The deployment of this technology in real applications raises questions about the main vulnerabilities and security threats related to these systems. Presentation attacks can be defined as presentation of human characteristics or artifacts directly to the input of a biometric system trying to interfere with its normal operation. These attacks include the use of real irises as well as artifacts with different levels of sophistication. This chapter introduces iris presentation attack detection methods and its main challenges. First, we summarize the most popular types of attacks including the main challenges to address. Second, we present a taxonomy of presentation attack detection methods to serve as a brief introduction on this very active research area. Finally, we discuss the integration of these methods into iris recognition systems according to the most important scenarios of practical application.

Notes

Acknowledgements

This work was done in the context of the TABULA RASA and BEAT projects funded under the 7th Framework Programme of EU. This work was supported in part by the CogniMetrics Project under Grant TEC2015-70627-R from MINECO/FEDER.

References

  1. 1.
    Daugman J (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15:1148–1161CrossRefGoogle Scholar
  2. 2.
    Burge MJ, Bowyer KW (eds) (2013) Handbook of iris recognition. Springer, BerlinGoogle Scholar
  3. 3.
    Fierrez J, Morales A, Vera-Rodriguez R, Camacho D (2018) Multiple classifiers in biometrics. part 1: fundamentals and review. Inf Fusion 44:57–64CrossRefGoogle Scholar
  4. 4.
    Galbally J, Gomez-Barrero M (2017) chapter. In: Rathgeb C, Busch C (eds) Iris and periocular biometric recognition. Presentation attack detection in iris recognition, IET Digital Library, pp 235–263Google Scholar
  5. 5.
    Flom L, Safir A (1987) Iris recognition system. US Patent US4641349 AGoogle Scholar
  6. 6.
    Abraham R, Bennett ES, Sen N, Shah NB (2017) State of aadhaar report 2016–17. Tech Rep, IDinsightGoogle Scholar
  7. 7.
    Nguyen K, Fookes C, Jillela R, Sridharan S, Ross A (2017) Long range iris recognition: a survey. Pattern Recognit 72:123–143CrossRefGoogle Scholar
  8. 8.
    Chaos Computer Club Berlin: chaos computer clubs breaks iris recognition system of the samsung galaxy s8 (2017). https://www.ccc.de/en/updates/2017/iriden
  9. 9.
    ISO/IEC CD 30107-1. Information technology - biometrics - presentation attack detection - Part 1: framework (2016)Google Scholar
  10. 10.
    Daugman J (1999) Biometrics. Personal identification in a networked society. In: Chapter, Recognizing persons by their iris patterns. Kluwer Academic Publishers, Dordrecht, pp 103–121Google Scholar
  11. 11.
    Galbally J, Marcel S, Fierrez J (2014) Image quality assessment for fake biometric detection: application to iris, fingerprint and face recognition. IEEE Trans Image Process 23:710–724MathSciNetCrossRefGoogle Scholar
  12. 12.
    Menotti D, Chiachia G, Pinto A, Schwartz WR, Pedrini H, Falcao AX, Rocha A (2015) Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans Inf Forensics Secur 10:864–878CrossRefGoogle Scholar
  13. 13.
    Raghavendra R, Busch C (2014) Presentation attack detection algorithm for face and iris biometrics. In: Proceedings of the IEEE European signal processing conference (EUSIPCO), pp 1387–1391Google Scholar
  14. 14.
    Ratha NK, Connell JH, Bolle RM (2001) Enhancing security and privacy in biometrics-based authentication systems. IBM Syst J 40(3):614–634CrossRefGoogle Scholar
  15. 15.
    Gomez-Barrero M, Maiorana E, Galbally J, Campisi P, Fierrez J (2017) Multi-biometric template protection based on homomorphic encryption. Pattern Recogn 67:149–163CrossRefGoogle Scholar
  16. 16.
    Hadid A, Evans N, Marcel S, Fierrez J (2015) Biometrics systems under spoofing attack. IEEE Signal Process Mag 32:20–30CrossRefGoogle Scholar
  17. 17.
    Johnson P, Lazarick R, Marasco E, Newton E, Ross A, Schuckers S (2012) Biometric liveness detection: framework and metrics. In: Proceedings of the NIST international biometric performance conference (IBPC)Google Scholar
  18. 18.
    Czajka A (2013) Database of iris printouts and its application: development of liveness detection method for iris recognition. In: Proceedings of the international conference on methods and models in automation and robotics (MMAR), pp 28–33Google Scholar
  19. 19.
    Pacut A, Czajka A (2006) Aliveness detection for iris biometrics. In: Proceedings of the IEEE international Carnahan conference on security technology (ICCST), pp 122–129Google Scholar
  20. 20.
    Ruiz-Albacete V, Tome-Gonzalez P, Alonso-Fernandez F, Galbally J, Fierrez J, Ortega-Garcia J (2008) Direct attacks using fake images in iris verification. In: Proceedings of the COST 2101 workshop on biometrics and identity management (BioID). LNCS, vol 5372. Springer, Berlin, pp 181–190Google Scholar
  21. 21.
    Raghavendra R, Busch C (2014) Presentation attack detection on visible spectrum iris recognition by exploring inherent characteristics of light field camera. In: Proceedings of the IEEE international joint conference on biometrics (IJCB) (2014)Google Scholar
  22. 22.
    Thalheim L, Krissler J (2002) Body check: biometric access protection devices and their programs put to the test. ct magazine, pp 114–121Google Scholar
  23. 23.
    He X, Lu Y, Shi P (2009) A new fake iris detection method. In: Proceedings of the IAPR/IEEE international conference on biometrics (ICB). LNCS, vol 5558. Springer, Berlin, pp 1132–1139CrossRefGoogle Scholar
  24. 24.
    Raja KB, Raghavendra R, Busch C (2015) Presentation attack detection using laplacian decomposed frequency response for visible spectrum and near-infra-red iris systems. In: Proceedings of the of IEEE international conference on biometrics: theory and applications (BTAS)Google Scholar
  25. 25.
    Raja KB, Raghavendra R, Busch C (2015) Video presentation attack detection in visible spectrum iris recognition using magnified phase information. IEEE Trans Inf Forensics Secur 10:2048–2056CrossRefGoogle Scholar
  26. 26.
    Zhang H, Sun Z, Tan T, Wang J (2011) Learning hierarchical visual codebook for iris liveness detection. In: Proceedings of the IEEE international joint conference on biometrics (IJCB)Google Scholar
  27. 27.
    Yambay D, Doyle JS, Boyer KW, Czajka A, Schuckers S (2014) Livdet-iris 2013 - iris liveness detection competition 2013. In: Proceedings of the IEEE international joint conference on biometrics (IJCB)Google Scholar
  28. 28.
    Daugman J (2004) Iris recognition and anti-spoofing countermeasures. In: Proceedings of the international biometrics conference (IBC)Google Scholar
  29. 29.
    von Seelen UC (2005) Countermeasures against iris spoofing with contact lenses. In: Proceedings of the biometrics consortium conference (BCC)Google Scholar
  30. 30.
    Wei Z, Qiu X, Sun Z, Tan T (2008) Counterfeit iris detection based on texture analysis. In: Proceedings of the IAPR international conference on pattern recognition (ICPR)Google Scholar
  31. 31.
    Zhang H, Sun Z, Tan T (2010) Contact lense detection based on weighted LBP. In: Proceedings of the IEEE international conference on pattern recognition (ICPR), pp 4279–4282Google Scholar
  32. 32.
    Lefohn A, Budge B, Shirley P, Caruso R, Reinhard E (2003) An ocularist’s approach to human iris synthesis. IEEE Trans Comput Graph Appl 23:70–75CrossRefGoogle Scholar
  33. 33.
    Chen R, Lin X, Ding T (2012) Liveness detection for iris recognition using multispectral images. Pattern Recogn Lett 33:1513–1519CrossRefGoogle Scholar
  34. 34.
    Czajka A (2015) Pupil dynamics for iris liveness detection. IEEE Trans Inf Forensics Secur 10:726–735CrossRefGoogle Scholar
  35. 35.
    Gupta P, Behera S, Singh MVV (2014) On iris spoofing using print attack. In: IEEE international conference on pattern recognition (ICPR)Google Scholar
  36. 36.
    He X, Lu Y, Shi P (2008) A fake iris detection method based on FFT and quality assessment. In: Proceedings of the IEEE Chinese conference on pattern recognition (CCPR)Google Scholar
  37. 37.
    Huang X, Ti C, zhen Hou Q, Tokuta A, Yang R (2013) An experimental study of pupil constriction for liveness detection. In: Proceedings of the IEEE workshop on applications of computer vision (WACV), pp 252–258Google Scholar
  38. 38.
    Kanematsu M, Takano H, Nakamura K (2007) Highly reliable liveness detection method for iris recognition. In: Proceedings of the SICE annual conference, international conference on instrumentation, control and information technology (ICICIT), pp 361–364Google Scholar
  39. 39.
    Lee EC, Yo YJ, Park KR (2008) Fake iris detection method using Purkinje images based on gaze position. Opt Eng 47(067):204Google Scholar
  40. 40.
    Yambay D, Becker B, Kohli N, Yadav, D, Czajka, A, Bowyer KW, Schuckers S, Singh R, Vatsa M, Noore A, Gragnaniello D, Sansone C, Verdoliva L, He L, Ru Y, Li H, Liu N, Sun Z, Tan T (2017) Livdet iris 2017, iris liveness detection competition 2017. In: Proceedings of the IEEE international joint conference on biometrics (IJCB), pp 1–6Google Scholar
  41. 41.
    Raghavendra R, Busch C (2015) Robust scheme for iris presentation attack detection using multiscale binarized statistical image features. IEEE Trans Inf Forensics Secur 10:703–715CrossRefGoogle Scholar
  42. 42.
    Sequeira AF, Oliveira HP, Monteiro JC, Monteiro JP, Cardoso JS (2014) MobILive 2014 - mobile iris liveness detection competition. In: Proceedings of the IEEE international joint conference on biometrics (IJCB)Google Scholar
  43. 43.
    Yadav D, Kohli N, Doyle JS, Singh R, Vatsa M, Bowyer KW (2014) Unraveling the effect of textured contact lenses on iris recognition. IEEE Trans Inf Forensics Secur 9:851–862CrossRefGoogle Scholar
  44. 44.
    He Y, Hou Y, Li Y, Wang Y (2010) Liveness iris detection method based on the eye’s optical features. In: Proceedings of the SPIE optics and photonics for counterterrorism and crime fighting VI, p 78380RGoogle Scholar
  45. 45.
    Lee EC, Park KR, Kim J (2006) Fake iris detection by using Purkinje image. In: Proceedings of the IAPR international conference on biometrics (ICB), pp 397–403CrossRefGoogle Scholar
  46. 46.
    Lee SJ, Park KR, Lee YJ, Bae K, Kim J (2007) Multifeature-based fake iris detection method. Opt Eng 46(127):204Google Scholar
  47. 47.
    Park JH, Kang MG (2005) Iris recognition against counterfeit attack using gradient based fusion of multi-spectral images. In: Proceedings of the of international workshop on biometric recognition systems (IWBRS). LNCS, vol 3781. Springer, Berlin, pp 150–156CrossRefGoogle Scholar
  48. 48.
    Lee EC, Park KR (2010) Fake iris detection based on 3D structure of the iris pattern. Int J Imaging Syst Technol 20:162–166CrossRefGoogle Scholar
  49. 49.
    Krupiski R, Mazurek P (2012) Estimation of electrooculography and blinking signals based on filter banks. In: Proceedings of the of the 2012 international conference on computer vision and graphics, pp 156–163Google Scholar
  50. 50.
    Galbally J, Ortiz-Lopez J, Fierrez J, Ortega-Garcia J (2012) Iris liveness detection based on quality related features. In: Proceedings of the IAPR international conference on biometrics (ICB), pp 271–276Google Scholar
  51. 51.
    He X, An S, Shi P (2007) Statistical texture analysis-based approach for fake iris detection using support vector machines. In: Proceedings of the IAPR international conference on biometrics (ICB), LNCS, vol 4642. Springer, Berlin, pp 540–546Google Scholar
  52. 52.
    Alonso-Fernandez F, Bigun J (2014) Fake iris detection: a comparison between near-infrared and visible images. In: Proceedings of the IEEE international conference on signal-image technology and internet-based systems (SITIS), pp 546–553Google Scholar
  53. 53.
    Gragnaniello D, Poggi G, Sansone C, Verdoliva L (2015) An investigation of local descriptors for biometric spoofing detection. IEEE Trans Inf Forensics Secur 10:849–863CrossRefGoogle Scholar
  54. 54.
    He Z, Sun Z, Tan T, Wei Z (2009) Efficient iris spoof detection via boosted local binary patterns. In: Proceedings of the IEEE international conference on biometrics (ICB)Google Scholar
  55. 55.
    Sun Z, Zhang H, Tan T, Wang J (2014) Iris image classification based on hierarchical visual codebook. IEEE Trans Pattern Anal Mach Intell 36:1120–1133CrossRefGoogle Scholar
  56. 56.
    Park KR (2006) Robust fake iris detection. In: Proceedings of the of articulated motion and deformable objects (AMDO). LNCS, vol 4069. Springer, Berlin, pp 10–18CrossRefGoogle Scholar
  57. 57.
    Komogortsev O, Karpov A (2013) Liveness detection via oculomotor plant characteristics: attack of mechanical replicas. In: Proceedings of the international conference of biometrics (ICB) (2013)Google Scholar
  58. 58.
    Bowyer KW, Doyle JS (2014) Cosmetic contact lenses and iris recognition spoofing. IEEE Comput 47:96–98Google Scholar
  59. 59.
    Biggio B, Fumera G, Marcialis G, Roli F (2017) Statistical meta-analysis of presentation attacks for secure multibiometric systems. IEEE Trans Pattern Anal Mach Intell 39(3):561–575CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aythami Morales
    • 1
  • Julian Fierrez
    • 2
  • Javier Galbally
    • 3
  • Marta Gomez-Barrero
    • 4
  1. 1.School of EngineeringUniversidad Autonoma de MadridMadridSpain
  2. 2.Universidad Autonoma de MadridMadridSpain
  3. 3.European Commission - DG Joint Research CentreIspraItaly
  4. 4.da/sec - Biometrics and Internet Security Research GroupHochschule DarmstadtDarmstadtGermany

Personalised recommendations