Effect of Incorporated Inorganic Nanoparticles on Porous Structure and Functional Properties of Strongly and Weakly Acidic Ion Exchangers

  • Ludmila Ponomarova
  • Yuliya Dzyazko
  • Yurii Volfkovich
  • Valentin Sosenkin
  • Sergey Scherbakov
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


Weakly and strongly acidic cation exchange resins were modified with nanoparticles of zirconium hydrophosphate. The materials were investigated with methods of standard contact porosimetry and transmission electron microscopy. Both non-aggregated nanoparticles (4–20 nm) and larger formations (from 250 nm to several microns) have been found. The modifier particles occupy both hydrophilic and hydrophobic pores of the polymers. This provides transformation of porous structure of the resins due to additional swelling pressure. As a result, some regions of the polymer become unavailable for sorbate. The transformation affects sorption of Brilliant Green and Ni2+ ions. It was found that sorption rate is described by the model of chemical reaction of pseudo-second order. Depending on the interaction of polymer matrix with species being sorbed, the inorganic modifier is able to accelerate or slow down sorption. The composites were found to show breakthrough capacity toward the dye that is higher two to ten times compared with the pristine resins. However, lower breakthrough capacity toward Ni2+ is attributed to the composite based on strongly acidic resin.


  1. 1.
    Naushad M (2009) Inorganic and composite ion exchange materials and their applications (review). Ion Exchange Let 2:1–14Google Scholar
  2. 2.
    Khan A, Asiri AM, Rub MA et al (2012) Review on composite cation exchanger as interdisciplinary materials in analytical chemistry. Int J Electrochem Sci 7:3854–3902Google Scholar
  3. 3.
    Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – a review. Progr Polym Sci 38(8):1232–1261CrossRefGoogle Scholar
  4. 4.
    Çakmak M, Taşar Ş, Selen V et al (2017) Removal of astrazon golden yellow 7GL from colored wastewater using chemically modified clay. J Centr South Univer 24(4):743–753CrossRefGoogle Scholar
  5. 5.
    Öncü-Kaya EM, Şide N, Gök Ö et al (2017) Evaluation on dye removal capability of didodecyldimethylammonium-bentonite from aqueous solutions. J Dispers Sci Technol 38(8):1211–1220CrossRefGoogle Scholar
  6. 6.
    Fernandes de Queiroga LN, Soares PK, Fonseca MG et al (2016) Experimental design investigation for vermiculite modification: intercalation reaction and application for dye removal. Appl Clay Sci 126:113–121CrossRefGoogle Scholar
  7. 7.
    Houhoune F, Nibou D, Chegrouche S et al (2016) Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J Environ Chem Eng 4(3):3459–3346CrossRefGoogle Scholar
  8. 8.
    Sprynskyy M, Kowalkowski T, TutuIonic H et al (2015) Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloids Surfaces A: Physicochem Eng Aspects 465:159–167CrossRefGoogle Scholar
  9. 9.
    Yu H, Yang S, Ruan H et al (2013) Recovery of uranium ions from simulated seawater with palygorskite/amidoxime polyacrylonitrile composite. Appl Clay Sci 111:67–75CrossRefGoogle Scholar
  10. 10.
    Zebedius K, Madhumita S, Segametsi B et al (2013) Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal. Chem Eng J 222:186–197CrossRefGoogle Scholar
  11. 11.
    Mohammadi E, Kaan K, Nihan Y et al (2013) Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Appl Surf Sci 287:428–442CrossRefGoogle Scholar
  12. 12.
    Singha R, Donga H, Zengb Q et al (2017) Hexavalent chromium removal by chitosan modified-bioreduced nontronite. Geochim Cosmochim Acta 210:25–41CrossRefADSGoogle Scholar
  13. 13.
    Snoussiab Y, Abderrabba M, Sayari A (2016) Removal of cadmium from aqueous solutions by adsorption onto polyethylenimine-functionalized mesocellular silica foam: equilibrium properties. J Taiwan Institute Chem Eng 66:372–378CrossRefGoogle Scholar
  14. 14.
    Dasthaiah K, Selvan BR, Suneesh AS et al (2017) Ionic liquid modified silica gel for the sorption of americium(III) and europium(III) from dilute nitric acid medium. J Radioanalytic Nucl Chem 313(3):515–521CrossRefGoogle Scholar
  15. 15.
    NiuY, QuR, Sun Cet al (2013) Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. J Hazard Mater 244–245:276–286Google Scholar
  16. 16.
    Hu C, Deng J, Zhao Y et al (2014) A novel core-shell magnetic nano-sorbent with surface molecularly imprinted polymer coating for the selective solid phase extraction of dimetridazole. Food Chem 158:366–373CrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhang Z, Zhang M et al (2011) Preparation of core-shell magnetic ion-imprinted polymer for selective extraction of Pb(II) from environmental samples. Chem Eng J 178(15):443–450Google Scholar
  18. 18.
    Safari M, Yamini Y, Masoomi MY et al (2017) Magnetic metal-organic frameworks for the extraction of trace amounts of heavy metal ions prior to their determination by ICP-AES. Microchim Acta 184:1555–1565CrossRefGoogle Scholar
  19. 19.
    Sarkar S, Guibal E, Quignard F et al (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14(2):715 CrossRefGoogle Scholar
  20. 20.
    Zhang Q, Jiang P, Pan B et al (2009) Impregnating zirconium phosphate onto porous polymers for lead removal from waters: effect of nanosized particles and polymer chemistry. Ind Eng Chem Res 48:4495–4499CrossRefGoogle Scholar
  21. 21.
    Pan B, Pan B, Chen X et al (2006) Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. Water Res 40:2938–2946CrossRefGoogle Scholar
  22. 22.
    Sarkar S, Chatterjee P, Cumbal L et al (2011) Hybrid ion exchanger supported nanocomposites: sorption and sensing for environmental applications. Chem Eng J 166:923–931CrossRefGoogle Scholar
  23. 23.
    Dzyazko YS, Perlova OV, Perlova NA et al (2017) Composite cation-exchange resins containing zirconium hydrophosphate for purification of water from U(VI) cations. Desalin Water Treat 69:142–152CrossRefGoogle Scholar
  24. 24.
    Perlova N, Dzyazko Y, Perlova O et al (2017) Formation of zirconium hydrophosphate nanoparticles and their effect on sorption of uranyl cations. Nanoscale Res Lett:12–209
  25. 25.
    Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613CrossRefGoogle Scholar
  26. 26.
    Lee B, Bao L, Im H et al (2003) Synthesis and characterization of organic−inorganic hybrid mesoporous anion-exchange resins for perrhenate (ReO4 ) anion adsorption. Langmuir 19(10):4246–4252CrossRefGoogle Scholar
  27. 27.
    De Marco MJ, SenGupta AK, Greenleaf JE (2003) Arsenic removal using a polymeric/inorganic hybrid sorbent. Water. Res 37(1):164–176Google Scholar
  28. 28.
    Mal’tseva TV, Kolomiets EA, Vasilyuk SL (2017) Hybrid adsorbents based on hydrated oxides of Zr(IV), Ti(IV), Sn(IV), and Fe(III) for arsenic removal. J Water Chem Technol 39(4):214–219CrossRefGoogle Scholar
  29. 29.
    Cumbal L, SenGupta AK (2005) Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect. Environ Sci Technol 39(17):6508–6515CrossRefADSGoogle Scholar
  30. 30.
    Qingrui BP, Du ZW, Zhang W et al (2007) Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism. Water Res 41(14):3103–3111CrossRefGoogle Scholar
  31. 31.
    Dzyazko YS, Trachevskii VV, Rozhdestvenskaya LM et al (2013) Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate. Russ J Phys Chem A 87(5):840–845CrossRefGoogle Scholar
  32. 32.
    Borgo CA, Gushikem Y (2002) Zirconium phosphate dispersed on a cellulose fiber surface: preparation, characterization, and selective adsorption of Li+, Na+, and K+ from aqueous solution. J Colloid Interface Sci 246(2):343–347CrossRefADSGoogle Scholar
  33. 33.
    Zhang Q, Du Q, Jiao T et al (2013) Selective removal of phosphate in waters using a novel of cation adsorbent: zirconium phosphate (ZrP) behavior and mechanism. Chem Eng J 221:315–321CrossRefGoogle Scholar
  34. 34.
    Bhaumik A, Inagaki S (2001) Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J Am Chem Soc 123(4):691–696CrossRefGoogle Scholar
  35. 35.
    Chitrakar R, Tezuka S, Sonoda A et al (2006) Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide. J Colloid Interface Sci 297(2):426–433CrossRefADSGoogle Scholar
  36. 36.
    Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto Iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189CrossRefADSGoogle Scholar
  37. 37.
    Guang PX, Dan MZ, Chong LH et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424(1):1–10ADSGoogle Scholar
  38. 38.
    Maltseva TV, Kudelko EO, Belyakov VN (2009) Adsorption of Cu(II), Cd(II), Pb(II), Cr(VI) by double hydroxides on the basis of Al oxide and Zr, Sn, and Ti oxides. Russ J Phys Chem A 83(13):2336–2339CrossRefGoogle Scholar
  39. 39.
    Kudelko K, Maltseva T, Bieliakov V (2011) Adsorption and mobility of Cu (II), Cd (II), Pb (II) ions adsorbed on (hydr)oxide polymer sorbents MxOy·nH2O, M = Zr (IV), Ti (IV), Sn (IV), Mn (IV). Desalin Water Treat 35(1–3):295–299Google Scholar
  40. 40.
    Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2012) Effect of the porous structure of polymer on the kinetics of Ni2+ exchange on hybrid inorganic-organic ionites. Russ J Phys Chem A 86(6):913–919CrossRefGoogle Scholar
  41. 41.
    Dzyazko YS, Belyakov VN, Vasilyuk SL et al (2006) Anion-exchange properties of composite ceramic membranes containing hydrated zirconium dioxide. Russ J Appl Chem 79(5):769–773CrossRefGoogle Scholar
  42. 42.
    Dzyazko YS, Volfkovich YM, Sosenkin VE et al (2014) Composite inorganic membranes containing nanoparticles of hydrated zirconium dioxide for electrodialytic separation. Nanoscale Res Lett 9(1):271 CrossRefADSGoogle Scholar
  43. 43.
    Martı-Calatayud MC, Garcıa-Gabaldon M, Perez-Herranz V et al (2015) Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Adv 5:46348–46358CrossRefGoogle Scholar
  44. 44.
    Dzyazko YS, Rozhdestvenska LM, Vasilyuk SL et al (2017) Composite membranes containing nanoparticles of inorganic ion exchangers for electrodialytic desalination of glycerol. Nanoscale Res Lett 12:438 CrossRefADSGoogle Scholar
  45. 45.
    Hong JG, Chen Y (2015) Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide. J Membr Sci 473:210–217CrossRefGoogle Scholar
  46. 46.
    Pang R, Li X, Li J et al (2014) Preparation and characterization of ZrO2/PES hybrid ultrafiltration membrane with uniform ZrO2 nanoparticles. Desalination 332:60–66CrossRefGoogle Scholar
  47. 47.
    Myronchuk VG, Dzyazko YS, Zmievskii YG et al (2016) Organic-inorganic membranes for filtration of corn distillery. Acta Periodica Technologica 47:153–165CrossRefGoogle Scholar
  48. 48.
    Dzyazko YS, Rozhdestvenskaya LM, Zmievskii YG et al (2015) Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res Let 10:64. CrossRefADSGoogle Scholar
  49. 49.
    Hsu WY, Gierke TD (1983) Ion transport and clustering in nafion perfluorinated membranes. J Memr Sci 13(3):307–326CrossRefGoogle Scholar
  50. 50.
    Berezina NP, Kononenko NA, Dyomina OA et al (2008) Characterization of ion-exchange membrane materials: properties vs structure. Adv Colloid Interf Sci 139(1–2):3–28CrossRefGoogle Scholar
  51. 51.
    Yaroslavtsev AB, Nikonenko VV, Zabolotsky VI (2003) Ion transfer in ion-exchange and membrane materials. Russ Chem Rev 72(5):393–421CrossRefADSGoogle Scholar
  52. 52.
    Yaroslavtsev AB, Nikonenko VV (2009) Ion-exchange membrane materials: properties, modification, and practical application. Nanotechnol Russia 4(3–4):137–159CrossRefGoogle Scholar
  53. 53.
    James PJ, Elliott JA, McMaster TJ et al (2000) Hydration of Nafion studied by AFM and X-ray scattering. J Mater Sci 35(20):5111–5119CrossRefADSGoogle Scholar
  54. 54.
    Young SK, Trevino SF, Beck Tan NC (2002) Small-angle neutron scattering investigation of structural changes in Nafion membranes induced by swelling with various solvents. J Polym Sci. Part B: Polym Phys 40:387–400CrossRefADSGoogle Scholar
  55. 55.
    Dzyazko YS, Ponomareva LN, Volfkovich YM et al (2013) Conducting properties of a gel ionite modified with zirconium hydrophosphate nanoparticles. Russ J Electrochem 49(3):209–215CrossRefGoogle Scholar
  56. 56.
    Stöhr C, Horst J, Höll WF (2001) Application of the surface complex formation model to ion exchange equilibria: part V. Adsorption of heavy metal salts onto weakly basic anion exchangers. React Funct Polym 49(2):117–132CrossRefGoogle Scholar
  57. 57.
    Saha B, Streat M (2005) Adsorption of trace heavy metals: application of surface complexation theory to a macroporous polymer and a weakly acidic ion-exchange resin. Ind Eng Chem Re 44(23):8671–8681CrossRefGoogle Scholar
  58. 58.
    Volfkovich YM, Sosenkin VE (2012) Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russ Chem Rev 86(6):936–959CrossRefGoogle Scholar
  59. 59.
    Volfkovich YM, Bagotsky VS, Filippov AN (2014) Porous materials and powders used in different fields of science and technology. Springer, London/Heidelberg/New York/DordrechtGoogle Scholar
  60. 60.
    Rouquerol J, Baron G, Denoyel R et al (2012) Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC technical report). Pure Appl Chem 84(1):107–136CrossRefGoogle Scholar
  61. 61.
    Helfferich F (1995) Ion Exchange. Dover, New YorkGoogle Scholar
  62. 62.
    Volfkovich YM (1984) Influence of the electric double-layer on the internal interfaces in an ion-exchanger on its electrochemical and sorption properties. Soviet Electrochem 20(5):621–628Google Scholar
  63. 63.
  64. 64.
    Eckenrode HM, Jen SH, Han J et al (2005) Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation. J Phys Chem B 109(10):4646–4653CrossRefGoogle Scholar
  65. 65.
    Bayramoglu G, Altintas B, Arica MY (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem Eng J 152:339–346CrossRefGoogle Scholar
  66. 66.
    Maheria KC, Chudasama UV (2007) Sorptive removal of dyes using titanium phosphate. ACS Publ Ind Eng Chem Res 46(21):6852–6857CrossRefGoogle Scholar
  67. 67.
    Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J 150:403–410CrossRefGoogle Scholar
  68. 68.
    Rouquerol F, Rouquerol J, Sing H (1999) Adsorption by powders and porous solids. Principles, methodology and application. Academic Press, London/San DiegoGoogle Scholar
  69. 69.
    Qiu H, Lv L, Pan B-C et al (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10(5):716–724CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ludmila Ponomarova
    • 1
  • Yuliya Dzyazko
    • 1
  • Yurii Volfkovich
    • 2
  • Valentin Sosenkin
    • 2
  • Sergey Scherbakov
    • 3
  1. 1.V. I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Science of UkraineKyivUkraine
  2. 2.A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of ScienceMoscowRussia
  3. 3.M. G. Kholodny Institute of Botany of the National Academy of Science of UkraineKyivUkraine

Personalised recommendations