Structural Peculiarities and Properties of Silver-Containing Polymer Nanocomposites

  • V. Demchenko
  • S. Riabov
  • S. Kobylinskyi
  • L. Goncharenko
  • N. Rybalchenko
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


Structural, thermomechanical, and antimicrobial properties of nanocomposites based on interpolyelectrolyte complex and Ag nanoparticles, which are formed by the chemical and thermal reduction methods from interpolyelectrolyte–metal complexes (IMC), have been investigated. It is established that chemical reduction of Ag+ ions in the pectin–Ag+−poly(4-vinylpyridine) IMC, involving sodium borohydride at molar ratio [BH4]:[Ag+] ≥ 1.0, results in formation of the nanocomposite based on the “pectin–poly(4-vinylpyridine)” interpolyelectrolyte complex (IPEC) and silver nanoparticles (Ag) as well. Applying small-angle X-ray method, we confirmed that at transformation from IMC to IPEC–Ag structure of nanocomposite, the relative heterogeneity level is augmented, while effective size of the region heterogeneity goes down. The nanocomposites pectin–poly(4-vinylpyridine)–Ag prepared are shown much higher Tg value and enhanced ability for deformation than those for IMC. Another type of nanocomposites on the base of interpolyelectrolyte complexes “pectin–polyethyleneimine (PEI)” and Ag nanoparticles was obtained by both chemical and thermal reduction of Ag+ ions in the polyelectrolyte–metal complexes. Such type of nanocomposites with Ag nanoparticles incorporated into polymer matrix is obtained due to the chemical reduction of Ag+ ions by NaBH4 in the interpolyelectrolyte complex, and appearance of the silver metallic phase is observed in full extent, while BH4:Ag+ molar ratio is equal to 2.0. It is defined that thermal reduction of Ag+ ions in IMC bulk (while films are heated to the temperature around 100 °С and more) results in formation of silver-containing nanocomposites. In its turn, thermal reduction of silver ions is found out to take place owing to polyethyleneimine (namely, on account of electron transfer from the amino groups’ nitrogen atoms of polyethyleneimine to Ag+ ions). The antimicrobial investigation of the elaborated nanocomposites revealed they possess a high antimicrobial activity against S. aureus and E. coli strains.


Interpolyelectrolyte complexes Interpolyelectrolyte–metal complexes Silver-containing nanocomposite Structure Thermomechanical properties Antimicrobial properties 


  1. 1.
    Demchenko V, Riabov S, Rybalchenko N, Goncharenko L, Kobylinskyi S, Shtompel V (2017) X-ray study of structural formation, thermomechanical and antimicrobial properties of copper-containing polymer nanocomposites obtained by the thermal reduction method. Eur Polym J 96:326–336CrossRefGoogle Scholar
  2. 2.
    Demchenko V, Shtompel V, Riabov S (2016) Nanocomposites based on interpolyelectrolyte complex and Cu/Cu2O core–shell nanoparticles: structure, thermomechanical and electric properties. Eur Polym J 75:310–316CrossRefGoogle Scholar
  3. 3.
    Demchenko VL, Shtompel VI, Riabov SV (2015) DC field effect on the structuring and thermomechanical and electric properties of nanocomposites formed from pectin–Cu2+–polyethyleneimine ternary polyelectrolyte–metal complexes. Polym Sci A 57:635–643CrossRefGoogle Scholar
  4. 4.
    Demchenko VL, Shtompel VI (2014) Structuring, morphology, and thermomechanical properties of nanocomposites formed from ternary polyelectrolyte–metal complexes based on pectin, polyethyleneimine, and CuSO4. Polym Sci B 56:927–934Google Scholar
  5. 5.
    Pomogailo AD, Kestelman VN (2005) Metallopolymer nanocomposites. Springer, New YorkGoogle Scholar
  6. 6.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  7. 7.
    Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823CrossRefGoogle Scholar
  8. 8.
    Ruiz P, Macanas J, Munoz M, Muraviev DN (2011) Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure. Nanoscale Res Lett 6:343–348ADSCrossRefGoogle Scholar
  9. 9.
    Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL (2008) Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24:7663–7673CrossRefGoogle Scholar
  10. 10.
    Deng Z, Zhu H, Peng B, Chen H, Sun YF, Gang XD, Jin PJ, Wang JL (2012) Synthesis of PS/Ag nanocomposite spheres with catalytic and antibacterial activities. ACS Appl Mater Interfaces 4:5625–5632CrossRefGoogle Scholar
  11. 11.
    Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM (2014) Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int J Nanomedicine 9:1883–1889CrossRefGoogle Scholar
  12. 12.
    Barud HS, Regiani T, Marques RFC, Lustri WR, Messaddeq Y, Ribeiro SJL (2011) Antimicrobial bacterial cellulose-silver nanoparticles composite membranes. J Nanomater 2001:1–8CrossRefGoogle Scholar
  13. 13.
    Shtompel VI, Sasa BS, Riabov SV, Kercha YY, Titov GV (2010) Polyelectrolyte complexes based on Na-carboxymethylcellulose and polyethyleneimine chloride: identification and structure. Polym J 32:204–209 (in Ukrainian)Google Scholar
  14. 14.
    Demchenko V, Shtompel V, Riabov S, Lysenkov E (2015) Constant electric and magnetic fields effect on the structuring and thermomechanical and thermophysical properties of nanocomposites formed from pectin–Cu2+–polyethyleneimine interpolyelectrolyte – metal complexes. Nanoscale Res Lett 10:479–485ADSCrossRefGoogle Scholar
  15. 15.
    Kratky O, Pilz I, Schmitz PJ (1966) Absolute intensity measurement of small-angle x-ray scattering by means of a standard sample. J Colloid Interface Sci 21:24–34ADSCrossRefGoogle Scholar
  16. 16.
    Shtompel VI, Kercha YY (2008) Structure of linear polyurethanes. Naukova dumka, Kiev [in Russian]Google Scholar
  17. 17.
    Guinier A (2000) X-ray diffraction: in crystals, imperfect crystals, and amorphous bodies. Dower Publications, New YorkGoogle Scholar
  18. 18.
    Demchenko V, Riabov S, Shtompel V (2017) X-ray study of structural formation and thermomechanical properties of silver-containing polymer nanocomposites. Nanoscale Res Lett 12:235–240ADSCrossRefGoogle Scholar
  19. 19.
    Ruland W (1971) Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J Appl Crystallogr 4:70–73CrossRefGoogle Scholar
  20. 20.
    Perret R, Ruland W (1971) Eine verbesserte Auswertungsmethode fur die Rontgenkleinewin-kelstreuung von Hochpolymeren. Kolloid Z Z Polym 247:835–843CrossRefGoogle Scholar
  21. 21.
    Porod G (1982) In: Glatter O, Kratky O (eds) Small-angle X-ray scattering. Academic Press, LondonGoogle Scholar
  22. 22.
    Teitelbaum BJ (1979) Thermomechanical analysis of polymers. Nauka, Moscow [in Russian]Google Scholar
  23. 23.
    Case CL, Johnson TR (1984) Laboratory experiments in microbiology. Benjamin Cummings Pub Inc., Menlo ParkGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • V. Demchenko
    • 1
  • S. Riabov
    • 1
  • S. Kobylinskyi
    • 1
  • L. Goncharenko
    • 1
  • N. Rybalchenko
    • 2
  1. 1.Institute of Macromolecular Chemistry, The National Academy of Sciences of UkraineKyivUkraine
  2. 2.Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations