Advertisement

Copper Nucleation on Nickel from Pyrophosphate-Based Polyligand Electrolyte

  • Antonnia Maizelis
  • Boris Bairachniy
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)

Abstract

The process of electrochemical nucleation and growth of copper nuclei on nickel substrate from weak alkaline polyligand pyrophosphate-ammonia electrolyte was studied by cyclic voltammetry and chronoamperometry. The parameters of the processes are determined using the mathematical model of the mechanism of instantaneous nucleation and growth of two-dimensional and three-dimensional nuclei. It is shown that when the cathode potential is increased above − 0.8, the height of the 2D layer of copper nuclei and the number of simultaneously formed 3D nuclei significantly increase. This leads to the formation of continuous copper films of minimal thickness. This is especially important in the formation of multilayer coatings containing not only copper layers but also layers of copper alloys with more electronegative metals.

Notes

Acknowledgements

The publication contains the results of studies conducted by presidents of Ukraine grant for competitive projects No. F70/18701 of the State Fund for Fundamental Research and by project of the Ministry of Education and Science of Ukraine.

References

  1. 1.
    Rout S, Mallik A, Ray BC (2010) Electrochemical synthesis of Cu thin films under ultrasonic irradiation: the effect on ex-situ growth behavior. In: International conference on recent trends in materials and characterization, Suratkal, 14–15 FebGoogle Scholar
  2. 2.
    Grujicic D, Pesic B (2005) Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim Acta 50(22):4426–4443. https://doi.org/10.1016/j.electacta.2005.02.012 CrossRefGoogle Scholar
  3. 3.
    Matsushima JT, Santos LCD, Couto AB, Baldan MR, Ferreira NG (2012) Electrodeposition of Cu nanoparticles on BDD electrodes: reactions and nucleation mechanism. J Electrochem Soc 159(4):D246–D252. https://doi.org/10.1149/2.093204jes CrossRefGoogle Scholar
  4. 4.
    Deng Y, Ling H, Feng X, Hang T, Li M (2015) Electrodeposition and characterization of copper nanocone structures. Cryst Eng Commun 17(4):868–876. https://doi.org/10.1039/C4CE01993H CrossRefGoogle Scholar
  5. 5.
    Tsakova V, Borissov D, Ranguelov B, Stromberg C, Schultze JW (2001) Electrochemical incorporation of copper in polyaniline layers. Electrochim Acta 46(26):4213–4222. https://doi.org/10.1016/S0013-4686(01)00705-8 CrossRefGoogle Scholar
  6. 6.
    Lai SC, Lazenby RA, Kirkman PM, Unwin PR (2015) Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces. Chem Sci 6(2):1126–1138. https://doi.org/10.1039/C4SC02792B CrossRefGoogle Scholar
  7. 7.
    Simkunaite D, Valsiunas I, Jasulaitiene V, Selskis A (2015) The initial stages of copper deposition onto glassy carbon electrode modified with selenium compounds. Chemija 26(4):229–237Google Scholar
  8. 8.
    Li Y, Sun JZ, Bian C, Tong JH, Dong HP, Zhang H, Xia SH (2015) Copper nano-clusters prepared by one-step electrodeposition and its application on nitrate sensing. AIP Adv 5(4):041312. https://doi.org/10.1063/1.4905712 CrossRefADSGoogle Scholar
  9. 9.
    Losey MW, Griffiths SK, Hachman JT (2006) Nucleation and adhesion of electrodeposited copper on anodized thin-film aluminum for LIGA microfabrication. J Electrochem Soc 153(12):D177–D186. https://doi.org/10.1149/1.2354453 CrossRefGoogle Scholar
  10. 10.
    Luyima A, Cui W, Heckman C, Moats MS (2016) Examination of copper electrowinning smoothing agents. Part IV: nucleation and growth of copper on stainless steel. Miner Metall Proc 33(1):39–46Google Scholar
  11. 11.
    Aromaa J, Kekki A, Stefanova A, Forsen O (2012) Copper nucleation and growth patterns on stainless steel cathode blanks in copper electrorefining. J Solid State Electr 16(11):3529–3537. https://doi.org/10.1007/s10008-012-1898-x CrossRefGoogle Scholar
  12. 12.
    Palomar-Pardave M, Garfias-Garcia E, Romero-Romo M, Ramirez-Silva MT, Batina N (2011) Influence of the substrate’s surface structure on the mechanism and kinetics of the electrochemical UPD formation of a copper monolayer on gold. Electrochim Acta 56(27):10083–10092. https://doi.org/10.1016/j.electacta.2011.08.105 CrossRefGoogle Scholar
  13. 13.
    Willis M, Alkire R (2009) Additive-assisted nucleation and growth by electrodeposition I. Experimental studies with copper seed arrays on gold films. J Electrochem Soc 156(10):D377–D384. https://doi.org/10.1149/1.3183502 CrossRefGoogle Scholar
  14. 14.
    Garfias-Garcia E, Palomar-Pardave M, Romero-Romo M, Ramirez-Silva MT, Batina N (2007) Kinetics mechanism of copper UPD nucleation and growth on mono and polycrystalline gold. ECS Trans 3(34):35–43. https://doi.org/10.1149/1.2795610 CrossRefGoogle Scholar
  15. 15.
    Molodkina EB, Ehrenburg MR, Danilov AI, Feliu JM (2016) Two-dimensional Cu deposition on Pt(100) and stepped surfaces of platinum single crystals. Electrochim Acta 194: 385–394. https://doi.org/10.1016/j.electacta.2016.02.082 CrossRefGoogle Scholar
  16. 16.
    Emekli U, West AC (2009) Effect of additives and pulse plating on copper nucleation onto Ru. Electrochim Acta 54(4):1177–1183. https://doi.org/10.1016/j.electacta.2008.08.065 CrossRefGoogle Scholar
  17. 17.
    Rigano PM, Mayer C, Chierchie T (1988) Electrochemical nucleation and growth of copper on polycrystalline palladium. J Electroanal Chem Interfacial Electrochem 248(1):219–228. https://doi.org/10.1016/0022-0728(88)85163-5 CrossRefGoogle Scholar
  18. 18.
    Ballesteros JC, Chainet E, Ozil P, Trejo G, Meas Y (2010) Initial stages of the electrocrystallization of copper from non-cyanide alkaline bath containing glycine. J Electroanal Chem 645(2):94–102. https://doi.org/10.1016/j.jelechem.2010.05.002 CrossRefGoogle Scholar
  19. 19.
    Zhang QB, Hua YX (2014) Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chlorideurea deep eutectic solvent: nucleation and growth mechanism. Phys Chem Chem Phys 16(48):27088–27095. https://doi.org/10.1039/C4CP03041A CrossRefGoogle Scholar
  20. 20.
    Im B, Kim S (2014) Nucleation and growth of Cu electrodeposited directly on W diffusion barrier in neutral electrolyte. Electrochim Acta 130:52–59. https://doi.org/10.1016/j.electacta.2014.02.154 CrossRefGoogle Scholar
  21. 21.
    Zheng M, Kelly JJ, Deligianni H (2007) Electrodeposition of Cu on Ta-based layers I. Electrodeposition on Ta. J Electrochem Soc 154(8):D400–D405. https://doi.org/10.1149/1.2744153 CrossRefGoogle Scholar
  22. 22.
    Nagar M, Radisic A, Strubbe K, Vereecken PM (2014) The effect of polyether suppressors on the nucleation and growth of copper on RuTa seeded substrate for direct copper plating. Electrochim Acta 127:315–326. https://doi.org/10.1016/j.electacta.2014.02.052 CrossRefGoogle Scholar
  23. 23.
    Dutra AJB, O’keefe TJ (1999) Copper nucleation on titanium for thin film applications. J Appl Electrochem 29(10):1217–1227. https://doi.org/10.1023/A:1003537318303 CrossRefGoogle Scholar
  24. 24.
    Kim S, Duquette DJ (2006) Nucleation characteristics of directly electrodeposited copper on TiN. J Electrochem Soc 153(9):C673–C676. https://doi.org/10.1149/1.2219712 CrossRefGoogle Scholar
  25. 25.
    Schrebler Arratia R, Aros Meneses H, Schrebler Guzman R, Carlesi Jara C (2012) Use of polyethylene glycol as organic additive in copper electrodeposition over stainless steel cathodes. Lat Am Appl Res 42(4):371–376Google Scholar
  26. 26.
    Mascaro LH, Pereira EC (2000) Deposition of copper on passivated chromium. J Electroanal Chem 485(1):81–85. https://doi.org/10.1016/S0022-0728(00)00076-0 CrossRefGoogle Scholar
  27. 27.
    Chang HK, Choe BH, Lee JK (2005) Influence of titanium oxide films on copper nucleation during electrodeposition. Mater Sci Eng A 409(1):317–328. https://doi.org/10.1016/j.msea.2005.03.114 CrossRefGoogle Scholar
  28. 28.
    Argañaraz MBQ, Vázquez CI, Lacconi GI (2010) Copper electrodeposition onto hydrogenated Si (1 1 1) surfaces: Influence of thiourea. J Electroanal Chem 639(1–2):95–101CrossRefGoogle Scholar
  29. 29.
    Khelladi MR, Mentar L, Azizi A, Sahari A, Kahoul A (2009) Electrochemical nucleation and growth of copper deposition onto FTO and n-Si (100) electrodes. Mater Chem Phys 115(1):385–390. https://doi.org/10.1016/j.matchemphys.2008.12.017 CrossRefGoogle Scholar
  30. 30.
    Ivanou DK, Ivanova YA, Kulak AI, Streltsov EA (2012) Photoinduced selective copper electrodeposition on p-Si (111). Electrochem Commun 17:38–40. https://doi.org/10.1016/j.elecom.2012.01.015 CrossRefGoogle Scholar
  31. 31.
    Zhu XR (2014) The nucleation and growth kinetics of copper nanoparticles electrodeposited at water-immiscible interface of castor oiled graphite-epoxy solid electrodes by cyclic voltammetry. Appl Mech Mater 510:86–90. https://doi.org/10.4028/www.scientific.net/AMM.510.86 CrossRefGoogle Scholar
  32. 32.
    Majidi MR, Asadpour-Zeynali K, Hafezi B (2009) Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochim Acta 54(3):1119–1126. https://doi.org/10.1016/j.electacta.2008.08.035 CrossRefGoogle Scholar
  33. 33.
    Wu S, Yin Z, He Q, Lu G, Yan Q, Zhang H (2011) Nucleation mechanism of electrochemical deposition of Cu on reduced graphene oxide electrodes. J Phys Chem C 115(32):15973–15979. https://doi.org/10.1021/jp201667p CrossRefGoogle Scholar
  34. 34.
    Nichols RJ, Schroer D, Meyer H (1995) An in situ scanning probe microscopy study of copper electrodeposition on conductive polypyrrole. Electrochim Acta 40(10):1479–1485. https://doi.org/10.1016/0013-4686(95)00051-F CrossRefGoogle Scholar
  35. 35.
    Polewska W, Behm RJ, Magnussen OM (2003) In-situ video-STM studies of Cu electrodeposition on Cu (100) in HCl solution. Electrochim Acta 48(20):2915–2921. https://doi.org/10.1016/S0013-4686(03)00356-6 CrossRefGoogle Scholar
  36. 36.
    Garcia-Rodriguez DE, Mendoza-Huizar LH, Rios-Reyes CH, Alatorre-Ordaz MA (2012) Copper electrodeposition on glassy carbon and highly oriented pyrolytic graphite substrates from perchlorate solutions. Quim Nova 35(4):699–704. https://doi.org/10.1590/S0100-40422012000400008 CrossRefGoogle Scholar
  37. 37.
    Guascito MR, Malitesta C, Sabbatini L (2012) Nucleation and growth of copper particles on Pt and Pt/poly-3-methylthiophene modified electrode in presence of Cl complexing agent. Mater Chem Phys 131(3):719–727. https://doi.org/10.1016/j.matchemphys.2011.10.041 CrossRefGoogle Scholar
  38. 38.
    Oskam G, Vereecken PM, Searson PC (1999) Electrochemical deposition of copper on n-Si/TiN. J Electrochem Soc 146(4):1436–1441. https://doi.org/10.1149/1.1391782 CrossRefGoogle Scholar
  39. 39.
    Hasan M, Rohan JF (2010) Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications. J Electrochem Soc 157(5):D278–D282. https://doi.org/10.1149/1.3332729 CrossRefGoogle Scholar
  40. 40.
    Paunovic M (1985) Potentiostatic high overpotential studies of copper deposition from electroless copper solutions. Sci Technol 132(5):1155–1157Google Scholar
  41. 41.
    Ballesteros JC, Chainet E, Ozil P, Meas Y, Trejo G (2011) Electrodeposition of copper from non-cyanide alkaline solution containing tartrate. Int J Electrochem Sci 6:2632–2651Google Scholar
  42. 42.
    Radisic A, Long JG, Hoffmann PM, Searson PC (2001) Nucleation and growth of copper on TiN from pyrophosphate solution. J Electrochem Soc 148(1):C41–C46. https://doi.org/10.1149/1.1344539 CrossRefGoogle Scholar
  43. 43.
    Hoffmann PM, Radisic A, Searson PC (2000) Growth kinetics for copper deposition on Si (100) from pyrophosphate solution. J Electrochem Soc 147(7):2576–2580. https://doi.org/10.1149/1.1393571 CrossRefGoogle Scholar
  44. 44.
    Shaw MJ, Grunow S, Duquette DJ (2001) “Seedless” electrochemical deposition of copper on physical vapor deposition-W2N liner materials for ultra large scale integration (ULSI) devices. J Electron Mater 30(12):1602CrossRefADSGoogle Scholar
  45. 45.
    Maizelis A, Bairachny B (2017) Voltammetric analysis of phase composition of Zn-Ni alloy thin films electrodeposited from weak alkaline polyligand electrolyte. J Nano Electron Phys 9(5):1–7. https://doi.org/10.21272/jnep.9(5).05010 CrossRefGoogle Scholar
  46. 46.
    Maizelis A, Bairachniy B (2017) Electrochemical formation of multilayer SnO 2 − Sb x O y coating in complex electrolyte. Nanoscale Res Lett 12(1):119. https://doi.org/10.1186/s11671-017-1902-6 CrossRefGoogle Scholar
  47. 47.
    Maizelis AA, Tul’skii GG, Bairachnyi VB, Trubnikova LV (2017) The effect of ligands on contact exchange in the NdFeB-Cu2+-P2O\(_{7}^{4-}\)-NH\(_{4}^{+}\) system. Russ J Electrochem 53(4):417–423. https://doi.org/10.1134/S1023193517040085 CrossRefGoogle Scholar
  48. 48.
    Maizelis A, Bairachniy B (2016) Electrochemical formation of multilayer metal and metal oxide coatings in complex electrolytes. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 557–572. https://doi.org/10.1007/978-3-319-56422-7_41 Google Scholar
  49. 49.
    Majzelis AA, Bairachniy BI, Trubnikova LV, Savitsky BA (2012) The effect of architecture of the Cu/(Ni-Cu) multilayer coatings on their microhardness. Funct Mater 19(2):238–244Google Scholar
  50. 50.
    Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem Interfacial Electrochem 159(2):267–285. https://doi.org/10.1016/S0022-0728(83)80627--5 CrossRefGoogle Scholar
  51. 51.
    Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889. https://doi.org/10.1016/0013-4686(83)85163-9 CrossRefGoogle Scholar
  52. 52.
    Palomar-Pardave M, Miranda-Hernandez M, Gonzalez I, Batina N (1998) Detailed characterization of potentiostatic current transients with 2D-2D and 2D-3D nucleation transitions. Surf Sci 399(1):80–95. https://doi.org/10.1016/S0039-6028(97)00813-3 CrossRefADSGoogle Scholar
  53. 53.
    Milchev A (2002) Electrocrystallization. Fundamentals of nucleation and growth. Kluwer Academic, BostonGoogle Scholar
  54. 54.
    Bewick A, Fleischmann M, Thirsk HR (1962) Kinetics of the electrocrystallization of thin films of calomel. Trans Faraday Soc 58:2200–2216. https://doi.org/10.1039/TF9625802200 CrossRefGoogle Scholar
  55. 55.
    Gonzalez Garcia J, Gallud Martinez F, Iniesta Valcarcel J, Montiel Leguey V, Aldaz Riera A, Lasia A (2001) Kinetics of electrocrystallization of PbO2 on glassy carbon electrodes: influence of electrode rotation. Electroanalysis 13(15):1258–1264. https://doi.org/10.1002/1521-4109(200110)13:15 CrossRefGoogle Scholar
  56. 56.
    Miranda-Hernandez M, Palomar-Pardave M, Batina N, Gonzalez I (1998) Identification of different silver nucleation processes on vitreous carbon surfaces from an ammonia electrolytic bath. J Electroanal Chem 443(1):81–93. https://doi.org/10.1016/S0022-0728(97)00487-7 CrossRefGoogle Scholar
  57. 57.
    Graham L, Steinbruchel C, Duquette DJ (2002) Nucleation and growth of electrochemically deposited copper on TiN and copper from a Cu NH3 bath. J Electroch Soc 149(8):C390–C395. https://doi.org/10.1149/1.1487836 CrossRefGoogle Scholar
  58. 58.
    Vazquez-Arenas J, Cruz R, Mendoza-Huizar LH (2006) The role of temperature in copper electrocrystallization in ammonia-chloride solutions. Electrochim Acta 52(3):892–903. https://doi.org/10.1016/j.electacta.2006.06.022 CrossRefGoogle Scholar
  59. 59.
    Radisic A, Long JG, Hoffmann PM, Searson PC (2001) Nucleation and growth of copper on TiN from pyrophosphate solution. J Electrochem Soc 148(1):C41–C46. https://doi.org/10.1149/1.1344539 CrossRefGoogle Scholar
  60. 60.
    Hoffmann PM, Radisic A, Searson PC (2000) Growth kinetics for copper deposition on Si (100) from pyrophosphate solution. J Electrochem Soc 147(7):2576–2580. https://doi.org/10.1149/1.1393571 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonnia Maizelis
    • 1
  • Boris Bairachniy
    • 1
  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations