Ni Addition Induced Changes in Structural, Magnetic, and Cationic Distribution of Zn0.75−xNixMg0.15 Cu0.1Fe2O4 Nano-ferrite

  • Manvi Satalkar
  • Shashank Narayan Kane
  • Tetiana Tatarchuk
  • João Pedro Araújo
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


Ni added Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 (with x = 0.00–0.75) nanoparticles with Scherrer’s grain diameter (D) < 56.73 nm were prepared via sol-gel auto-combustion technique. The morphological and quantitative analysis of structural, magnetic properties was performed by X-ray diffraction (XRD), magnetic measurements, scanning electron microscope (SEM), and energy-dispersive X-ray analysis (EDAX). Lattice parameter (a) of Zn-Ni-Mg-Cu ferrite shows non-monotonic variation with Ni content. With Ni addition no changes are observed in the concentration of Mg2+ ions at tetrahedral A and octahedral B site. The calculated oxygen parameter (\( {u}^{\overline{4}3m} \)) values are greater than the ideal value (0.375) for Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 nano-ferrite revealing distortion in spinel structure. SEM images for x = 0.00 reveal the formation of non-connected spherical pores with pore size of 555.70 nm, 768.37 nm, and 1.30 μm. EDAX validates existence of all the elements (Zn, Ni, Mg, Cu, Fe, O) in the sample. Non-zero Y-K angles for Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 ferrite suggest presence of non-collinear spin structure on B site. Coercivity (Hc) ranges between 8.95 and 136.39 Oe and increases linearly with nickel addition. Saturation magnetization (Ms) increases from 23.47 to 69.78 Am2/kg for lower Ni content (0.00 ≤ x ≤ 0.45), and for higher Ni content (x > 0.45), Ms reduces from 69.78 to 36.11 Am2/kg, ascribed to cationic diffusion from A to B or from B to A site in Zn0.75−xNi x Mg0.15Cu0.1Fe2O4 nano-ferrite. The nature of the surface defects in the Ni-doped Zn-Mg-Cu ferrites has been described on the basis of antistructural modeling.


Ferrites Cation distribution Yafet-Kittel angle Néel magnetic moment Antistructural modeling 



This work is supported by projects 783/CST/R & D/Phy and, Engg Sc, CSR-IC/CRS-74/2014-15/2104. Authors thank Dr. Mukul Gupta and Mr. L. Behra, UGC-DAE Consortium for Scientific Research, Indore, for performing XRD measurements. Authors express their gratitude to Dr. Shibu. M. Eapen, scientist-in-charge, STIC, Kochi (India), for providing SEM measurements.


  1. 1.
    Zhang H, Ma Z, Zhou J et al (2000) Preparation and investigation of (Ni0.15Cu0.25Zn0.60)Fe1.96O4 ferrite with very high initial permeability from self-propagated powders. J Magn Magn Mater 213:304–308ADSCrossRefGoogle Scholar
  2. 2.
    Reddy MP, Madhuri W, Ramana MV et al (2010) Effect of sintering temperature on structural and magnetic properties of NiCuZn and MgCuZn ferrites. J Magn Magn Mater 322:2819–2823ADSCrossRefGoogle Scholar
  3. 3.
    Reddy MP, Madhuri W, Balakrishnaiah G et al (2011) Microwave sintering of iron deficient Ni–Cu–Zn ferrites for multilayer chip inductors. Curr Appl Phys 11:191–198ADSCrossRefGoogle Scholar
  4. 4.
    Costa ACFM, Lula RT, Kiminami RHGA et al (2006) Preparation of nanostructured NiFe2O4 catalysts by combustion reaction. J Mater Sci 41:4871–4875ADSCrossRefGoogle Scholar
  5. 5.
    Dey C, Baishya K, Ghosh A et al (2017) Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles. J Magn Magn Mater 427:168–174. ADSCrossRefGoogle Scholar
  6. 6.
    Tartaj P, Morales MP, Verdaguer SV et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRefGoogle Scholar
  7. 7.
    Azad AM, Hedayati A, Rydn M et al (2013) Examining the Cu–Mn–O spinel system as an oxygen carrier in chemical looping combustion. Energy Technol 1:59–69CrossRefGoogle Scholar
  8. 8.
    Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111CrossRefGoogle Scholar
  9. 9.
    Ehrhardt H, Campbell SJ, Hofmann M (2002) Structural evolution of ball-milled ZnFe2O4. J Alloys Compd 339:255–260CrossRefGoogle Scholar
  10. 10.
    Sepelak V, Baabe D, Mienert D et al (2003) Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J Magn Magn Mater 257:377–386ADSCrossRefGoogle Scholar
  11. 11.
    Ammar S, Jouini N, Fiévet F et al (2004) Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345:658–662ADSCrossRefGoogle Scholar
  12. 12.
    Willard MA, Nakamura Y, Laughlin DE et al (1999) Magnetic properties of ordered and disordered spinel-phase ferrimagnets. J Am Ceram Soc 82:3342–3346CrossRefGoogle Scholar
  13. 13.
    Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven-Netherlands, pp 148–149, 157Google Scholar
  14. 14.
    Chikazumi S (1997) Physics of ferromagnetism. Oxford University Press, Oxford, pp 502–504Google Scholar
  15. 15.
    Roy PK, Bera J (2006) Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55) Fe2O4 ferrite prepared by auto combustion method. J Magn Magn Mater 298:38–42ADSCrossRefGoogle Scholar
  16. 16.
    Sujatha C, Reddy KV, Babu KS et al (2013) Effect of Mg substitution on electromagnetic properties of NiCuZn ferrite. J Magn Magn Mater 340:38–45ADSCrossRefGoogle Scholar
  17. 17.
    Akther Hossain AKM, Biswas TS, Yanagida T et al (2010) Investigation of structural and magnetic properties of polycrystalline Ni0.50Zn0.50−xMgxFe2O4 spinel ferrites. Mater Chem Phys 120:461–467CrossRefGoogle Scholar
  18. 18.
    Varalaxmi N, Reddy NR, Ramana MV et al (2008) Stress sensitivity of inductance in NiMgCuZn ferrites and development of a stress insensitive ferrite composition for micro inductors. J Mater Sci Mater Electron 19:399–405CrossRefGoogle Scholar
  19. 19.
    Dar MA, Verma V, Gairola SP et al (2012) Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl Surf Sci 258:5342–5347ADSCrossRefGoogle Scholar
  20. 20.
    Sujatha C, Reddy KV, Babu KS et al (2012) Structural and magnetic properties of Mg substituted NiCuZn nano ferrites. Physica B 407:1232–1237ADSCrossRefGoogle Scholar
  21. 21.
    Sujatha C, Reddy KV, Babu KS et al (2013) Effect of co substitution of Mg and Zn on electromagnetic properties of NiCuZn ferrites. J Phys Chem Solids 74:917–923ADSCrossRefGoogle Scholar
  22. 22.
    Satalkar M, Kane SN, Ghosh A et al (2014) Synthesis and soft magnetic properties of Zn0.8-xNixMg0.1Cu0.1Fe2O4 (x = 0.0–0.8) ferrites prepared by sol-gel auto-combustion method. J Alloys Compd 615:S313–S316CrossRefGoogle Scholar
  23. 23.
    Kane SN, Satalkar M (2017) Correlation between magnetic properties and cationic distribution of Zn0.85-xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J Mater Sci 52:3467–3477ADSCrossRefGoogle Scholar
  24. 24.
    Satalkar M, Kane SN, Kumaresavanji M et al (2017) On the role of cationic distribution in determining magnetic properties of Zn0.7-xNixMg0.2Cu0.1Fe2O4 nano ferrite. Mater Res Bull 91:14–21. CrossRefGoogle Scholar
  25. 25.
    Rana MU, Misbah-ul-Islam, Abbas T (2003) Magnetic interactions in Cu-substituted manganese ferrites. Solid State Commun 126:129–133ADSCrossRefGoogle Scholar
  26. 26.
    Topkaya R, Baykal A, Demir A (2013) Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J Nanopart Res 15:1359–1376CrossRefGoogle Scholar
  27. 27.
    Bamzai KK, Kour G, Kaur B et al (2014) Preparation, and structural and magnetic properties of Ca substituted magnesium ferrite with composition MgCaxFe2−xO4 (x = 0.00, 0.01, 0.03, 0.05, 0.07). J Mater 2014:1–8CrossRefGoogle Scholar
  28. 28.
    Mazen SA, Abu-Elsaad NI (2006) Structural and some magnetic properties of manganese-substituted lithium ferrites. J Magn Magn Mater 298:38–42CrossRefGoogle Scholar
  29. 29.
    Gadkari AB, Shinde TJ, Vasambekar PN (2010) Magnetic properties of rare earth ion (Sm3+) added nanocrystalline Mg–Cd ferrites, prepared by oxalate co-precipitation method. J Magn Magn Mater 322:3823–3827ADSCrossRefGoogle Scholar
  30. 30.
    Jadhav SA (2001) Magnetic properties of Zn-substituted Li–Cu ferrites. J Magn Magn Mater 224:167–172ADSCrossRefGoogle Scholar
  31. 31.
    Kapse VD, Ghosh SA, Raghuwanshi FC et al (2009) Nanocrystalline spinel Ni0.6Zn0.4Fe2O4: A novel material for H2S sensing. Mater Chem Phys 113:638–644CrossRefGoogle Scholar
  32. 32.
    Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252CrossRefGoogle Scholar
  33. 33.
    Qi X, Zhou J, Yue Z et al (2003) Permeability and microstructure of manganese modified lithium ferrite prepared by sol–gel auto-combustion method. Mater Sci Eng B 99:278–281CrossRefGoogle Scholar
  34. 34.
    Mohammed KA, Al-Rawas AD, Gismelseed AM et al (2012) Infrared and structural studies of Mg1–xZnxFe2O4 ferrites. Physica B 407:795–804ADSCrossRefGoogle Scholar
  35. 35.
    Alone ST, Shirsath SE, Kadam RH et al (2011) Chemical synthesis, structural and magnetic properties of nano-structured Co–Zn–Fe–Cr ferrite. J Alloys Compd 509:5055–5060CrossRefGoogle Scholar
  36. 36.
    Vegard L (1921) The constitution of mixed crystals and the space occupied by atoms. Z Phys 5:17–26ADSCrossRefGoogle Scholar
  37. 37.
    Sharma R, Thakur P, Sharma P et al (2017) Ferrimagnetic Ni2+ doped Mg-Zn spinel ferrite nanoparticles for high density information storage. J Alloys Compd 704:7–17CrossRefGoogle Scholar
  38. 38.
    Weil L, Bertaut EF, Bochirol L (1950) Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J Phys Radium 11:208–212CrossRefGoogle Scholar
  39. 39.
    Eloska E, Wolski W (1992) The evidence of Cdx 2+Fe1-x 3+[Ni2+ 1-xFe3+ 1+x]O4 cation distribution based on X-ray and mossbauer data. Phys Status Solidi (A) 132:K51–K56ADSCrossRefGoogle Scholar
  40. 40.
    Cervinka L, Simsa Z (1970) Distribution of copper ions in some copper-manganese ferrites. J Phys B (Czechoslovakia) 20:470–474ADSCrossRefGoogle Scholar
  41. 41.
    Tanna AR, Joshi HH (2013) Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. World Acad Sci Eng Technol 75:334–341Google Scholar
  42. 42.
    Pandit AA, More SS, Dorik RG et al (2003) Structural and magnetic properties of Co1+ySnyFe2–2y–xCrxO4 ferrite system. Bull Mater Sci 26:517–521CrossRefGoogle Scholar
  43. 43.
    Al-Hilli MF, Li S, Kassim KS (2012) Structural analysis, magnetic and electrical properties of samarium substituted lithium–nickel mixed ferrites. J Magn Magn Mater 324:873–879ADSCrossRefGoogle Scholar
  44. 44.
    Alimuddin MH, Shirsath SE, Meena SS et al (2013) Investigation of structural, dielectric, magnetic and antibacterial activity of Cu–Cd–Ni–FeO4 nanoparticles. J Magn Magn Mater 341:148–157ADSCrossRefGoogle Scholar
  45. 45.
    Hashim M, Meena SS, Kotnala RK et al (2014) Exploring the structural, Mössbauer and dielectric properties of Co2+ incorporated Mg0.5Zn0.5-xCoxFe2O4 nanocrystalline ferrite. J Magn Magn Mater 360:21–33ADSCrossRefGoogle Scholar
  46. 46.
    Mustafa G, Islam MU, Zhang W et al (2015) Influence of the divalent and trivalent ions substitution on the structural and magnetic properties of Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 ferrites prepared by sol–gel method. J Magn Magn Mater 387:147–154ADSCrossRefGoogle Scholar
  47. 47.
    Mohamed MB, Wahba AM, Heiba ZK (2015) Effect of Zn substitution on structural, magnetic, and electric properties of Ni1−xZnxFe1.78Al0.2Gd0.02O4 nanoparticles. J Supercond Nov Magn 28:3675–3683CrossRefGoogle Scholar
  48. 48.
    Sathishkumar G, Venkataraju C, Sivakumar K (2013) Magnetic and dielectric properties of cadmium substituted nickel cobalt nanoferrites. J Mater Sci Mater Electron 24:1057–1062CrossRefGoogle Scholar
  49. 49.
    Najmoddin N, Beitollahi A, Kavas H et al (2014) XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram Int 40:3619–3625CrossRefGoogle Scholar
  50. 50.
    Jadhav J, Biswas S, Yadav AK et al (2017) Structural and magnetic properties of nanocrystalline Ni-Zn ferrites: in the context of cationic distribution. J Alloys Compd 696:28–41CrossRefGoogle Scholar
  51. 51.
    Kurmude DV, Barkule RS, Raut AV et al (2014) X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J Supercond Nov Magn 27:547–553CrossRefGoogle Scholar
  52. 52.
    Tholkappiyan R, Vishista K (2015) Combustion synthesis of Mg–Er ferrite nanoparticles: cation distribution and structural, optical, and magnetic properties. Mater Sci Semicond Process 40:631–642CrossRefGoogle Scholar
  53. 53.
    Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141CrossRefGoogle Scholar
  54. 54.
    Sun Y, Ji G, Zheng M et al (2010) Synthesis and magnetic properties of crystalline mesoporous CoFe2O4 with large specific surface area. J Mater Chem 20:945–952CrossRefGoogle Scholar
  55. 55.
    Rikukawa H (1982) Relationship between microstructures and magnetic properties of ferrites containing closed pores. IEEE Trans Magn 18:1535–1537ADSCrossRefGoogle Scholar
  56. 56.
    Gao Z, Cui F, Zeng S et al (2010) A high surface area superparamagnetic mesoporous spinel ferrite synthesized by a template-free approach and its adsorptive property. Microporous Mesoporous Mater 132:188–195CrossRefGoogle Scholar
  57. 57.
    Verma A, Chatterjee R (2006) Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J Magn Magn Mater 306:313–320ADSCrossRefGoogle Scholar
  58. 58.
    Yafet Y, Kittel C (1952) Antiferromagnetic arrangements in ferrites. Phys Rev 87:290–294ADSCrossRefGoogle Scholar
  59. 59.
    Raghuvanshi S, Mazaleyrat F, Kane SN (2018) Mg1-xZnxFe2O4 nanoparticles: interplay between cation distribution and magnetic properties. AIP Adv 8:047804–047810ADSCrossRefGoogle Scholar
  60. 60.
    Faraz A, Maqsood A (2012) Synthesis, structural, electrical, magnetic Curie temperature and Y–K angle studies of Mn–Cu–Ni mixed spinel nanoferrites. J Supercond Nov Magn 25:509–517CrossRefGoogle Scholar
  61. 61.
    Tatarchuk TR, Paliychuk ND, Bououdina M et al (2018) Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloys Compd 731:1256–1266. CrossRefGoogle Scholar
  62. 62.
    Tatarchuk T, Bououdina M, Macyk W et al (2017) Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12(1):141–151. ADSCrossRefGoogle Scholar
  63. 63.
    Tatarchuk T, Bououdina M, Paliychuk N et al (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694:777–791. CrossRefGoogle Scholar
  64. 64.
    Ahmed MA, Hassan HE, Eltabey MM et al (2018) Mössbauer spectroscopy of MgxCu0.5−xZn0.5Fe2O4 (x=0.0, 0.2 and 0.5) ferrites system irradiated by γ-rays. Phys B Condens Matter 530:195–200. ADSCrossRefGoogle Scholar
  65. 65.
    Kurta SA, Mykytyn IM, Tatarchuk TR (2014) Structure and the catalysis mechanism of oxidative chlorination in nanostructural layers of a surface of alumina. Nanoscale Res Lett 9(1):357–365. ADSCrossRefGoogle Scholar
  66. 66.
    Tatarchuk T, Bououdina M, Vijaya JJ et al (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies, and applications. NANO 2016. Springer Proceedings in Physics, vol 195. Springer, Cham, pp 305–325. Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manvi Satalkar
    • 1
  • Shashank Narayan Kane
    • 1
  • Tetiana Tatarchuk
    • 2
    • 3
  • João Pedro Araújo
    • 4
  1. 1.Magnetic Materials Laboratory, School of PhysicsD. A. UniversityIndoreIndia
  2. 2.Department of Pure and Applied ChemistryVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  3. 3.Educational and Scientific Center of Chemical Materials Science and NanotechnologyVasyl Stefanyk Precarpathian National UniversityIvano-FrankivskUkraine
  4. 4.IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Department of Physics and Astronomy, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations