Advertisement

Magnetic Memory of Antitumor Magneto-sensitive Nanocomplex

  • V. Orel
  • A. Shevchenko
  • O. Rykhalskyi
  • A. Romanov
  • A. Burlaka
  • S. Lukin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)

Abstract

The theoretical and experimental studies suggest that there is a correlation between mechanical stress and magnetic properties in nanometer iron films. In this context, it was decided to investigate the influence of mechanical vibration and electromagnetic irradiation on the magnetic memory effect in the antitumor magneto-sensitive nanocomplex (AMNC) made of iron oxide nanoparticles and doxorubicin. The obtained results have highlighted a difference in the parameters of the magnetic memory effect demonstrating that saturation magnetic moment, coercivity, and relative intensity electron spin resonance of AMNC have a correlation with the vibration frequency used for AMNC synthesis. The conducted study opens a way for remote control of redox reactions within tumors.

Keywords

Mechanical vibration Radio frequency Antitumor magneto-sensitive nanocomplex Iron oxide Doxorubicin Magnetometry Electron spin resonance spectra Cancer nanotechnology 

References

  1. 1.
    Liang XJ, Chen C, Zhao Y et al (2010) Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol 596:467–488CrossRefGoogle Scholar
  2. 2.
    Yasar Razzaq M, Behl M, Lendlein A (2012) Magnetic memory effect of nanocomposites. Adv Funct Mater 22(1):184–191. https://doi.org/10.1002/adfm.201101590 CrossRefGoogle Scholar
  3. 3.
    Gobbo OL, Sjaastad K, Radomski MW et al (2015) Magnetic nanoparticles in cancer theranostics (review). Theranostics 5(11):1249–1263. https://doi.org/10.7150/thno.11544 CrossRefGoogle Scholar
  4. 4.
    Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103:317–324. https://doi.org/10.1007/s11060-010-0389-0 CrossRefGoogle Scholar
  5. 5.
    Winter L, Oezerdem C, Hoffmann W et al (2015) Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiat Oncol 10:201CrossRefGoogle Scholar
  6. 6.
    Orel V, Shevchenko A, Romanov A et al (2015) Magnetic properties and antitumor effect of nanocomplexes of iron oxide and doxorubicin. Nanomedicine 11:47–55CrossRefGoogle Scholar
  7. 7.
    Orel VE, Shevchenko AD, Rykhalskyi OY et al (2015) Investigation of nonlinear magnetic properties magneto-mechano-chemical synthesized nanocomplex from magnetite and antitumor antibiotic doxorubicin. In: Fesenko O, Yatsenko L (eds) Nanocomposites, nanophotonics, nanobiotechnology and applications, vol 156. Springer Proceedings in Physics, pp 103–110. https://doi.org/10.1007/978-3-319-06611-0_8 Google Scholar
  8. 8.
    Orel V, Shevchenko A, Rykhalskyi O et al (2017) Influence of radio frequency electromagnetic irradiation on magnetic properties of magneto-mechano-chemically synthesized antitumor nanocomplex. In: Fesenko O, Yatsenko I (eds) Nanocomposites, nanophotonics, nanobiotechnology and applications, vol 195. Springer Proceedings in Physics, pp 813–826. https://doi.org/10.1007/978-3-319-56422-7_62 Google Scholar
  9. 9.
    Sander D, Skomski R, Enders A et al (1998) The correlation between mechanical stress and magnetic properties of ultrathin films. J Phys D Appl Phys 31:663–670CrossRefADSGoogle Scholar
  10. 10.
    Tumanski S (2011) Handbook of magnetic measurements. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. 11.
    Iida T, Ishihara H (2002) Study of the mechanical interaction between an electromagnetic field and a nanoscopic thin film near electronic resonance. Opt Lett 27:754–756CrossRefADSGoogle Scholar
  12. 12.
    Woodward JR, Jackson RJ, Timmel CR (1997) Resonant radiofrequency magnetic field effects on a chemical reaction. Chem Phys Lett 272:376–382CrossRefADSGoogle Scholar
  13. 13.
    Buchachenko AL, Berdinsky VL (2002) Electron spin catalysis. Chem Rev 102:603–612. https://doi.org/10.1021/cr010370l CrossRefGoogle Scholar
  14. 14.
    Barnes FS, Greenebaum B (2015) The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54. https://doi.org/10.1002/ bem.21883CrossRefGoogle Scholar
  15. 15.
    Zel’dovich YB, Buchachenko AL, Frankevich EL (1988) Magnetic-spin effects in chemistry and molecular physics. Sov Phys Usp 31:385–408CrossRefADSGoogle Scholar
  16. 16.
    Ghodbane S, Lahbib A, Sakly M et al (2013) Bioeffects of static magnetic fields: oxidative stress, genotoxic effects, and Cancer studies. Biomed Res Int 2013:1. https://doi.org/10.1155/2013/602987 CrossRefGoogle Scholar
  17. 17.
    Johannsen M, Thiesen B, Wust P et al (2010) Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperth 26(8):790–795. https://doi.org/10.3109/0265673100 3745740CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • V. Orel
    • 1
    • 2
  • A. Shevchenko
    • 3
  • O. Rykhalskyi
    • 1
    • 2
  • A. Romanov
    • 1
  • A. Burlaka
    • 4
  • S. Lukin
    • 4
  1. 1.National Cancer InstituteKyivUkraine
  2. 2.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  3. 3.G.V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of UkraineKyivUkraine
  4. 4.R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations