Multifunctional Magnetic Nanocomposites on the Base of Magnetite and Hydroxyapatite for Oncology Applications

  • Ie. V. Pylypchuk
  • M. V. Abramov
  • A. L. Petranovska
  • S. P. Turanksa
  • T. M. Budnyak
  • N. V. Kusyak
  • P. P. Gorbyk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)


A survey of studies carried out at the Chuiko Institute of Surface Chemistry NAS of Ukraine aimed at developing the concept of creating magnetosensitive nanocomposites (NK) with multilevel hierarchical nanoscale architecture and functions of biomedical nanorobots. The data on the synthesis of magnetically sensitive nanocomposites of core-shell type on the basis of single-domain magnetite and hydroxyapatite, the study of their magnetic properties, features of immobilization on the surface of oncological preparations of different action mechanisms, bioactivity testing, creation of magnetic fluids on the basis of synthesized NK, and the establishment of the prospects of their use in oncology are presented.



The work was carried out with the support of the target comprehensive program of fundamental research of the National Academy of Sciences of Ukraine “Fundamental problems of the creation of new nanomaterials and nanotechnologies” for 2015–2019 (Project No. 38/17-n). The publication contains the results of research conducted with the grant support of the State Fund for Fundamental Research (project 31566).


  1. 1.
    Abramov N (2014) Magnetic fluid on the basis of doxorubicin for the application in oncology. Surface 6(21):241–258Google Scholar
  2. 2.
    Abramov N, Turanska S, Kusyak A, Petranovska A, Gorbyk P (2016) Synthesis and properties of magnetite/hydroxyapatite/doxorubicin nanocomposites and magnetic liquids based on them. J Nanostruct Chem 6:223–233CrossRefGoogle Scholar
  3. 3.
    Anirudhan T, Sandeep S (2012) Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J Mater Chem 22:12888–12899CrossRefGoogle Scholar
  4. 4.
    Bellin M-F (2006) MR contrast agents, the old and the new. Eur J Radiol 60:314–323CrossRefGoogle Scholar
  5. 5.
    Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523CrossRefGoogle Scholar
  6. 6.
    Chen F, Li C, Zhu Y-J, Zhao X-Y, Lu B-Q, Wu J (2013) Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe 3 O 4 nanoparticles: microwave-assisted rapid synthesis and application in pH-responsive drug release. Biomater Sci 1:1074–1081CrossRefGoogle Scholar
  7. 7.
    Davaran S, Alimirzalu S, Nejati-Koshki K, Nasrabadi HT, Akbarzadeh A, Khandaghi AA, Abbasian M, Alimohammadi S (2014) Physicochemical characteristics of Fe. Asian Pac J Cancer Prev 15:49–54CrossRefGoogle Scholar
  8. 8.
    Fukumori Y, Ichikawa H (2006) Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 17:1–28CrossRefGoogle Scholar
  9. 9.
    Gopi D, Ansari MT, Shinyjoy E, Kavitha L (2012) Synthesis and spectroscopic characterization of magnetic hydroxyapatite nanocomposite using ultrasonic irradiation. Spectrochim Acta A Mol Biomol Spectrosc 87:245–250ADSCrossRefGoogle Scholar
  10. 10.
    Gorbyk P (2013) Nanocomposites with medico-biological properties: synthesis, properties and application. Nanosyst Nanomater Nanotechnol 11:323–436Google Scholar
  11. 11.
    Gorbyk P, Chekhun V, Vovk R, Nazyrov Z, Kruglyak V, Ogrin F, Edelman I, Malakhovskii A, Sokolov A, Sukhachev A (2012) Nanocomposites of medicobiologic destination: reality and perspectives for oncology. Funct Mater 19:145Google Scholar
  12. 12.
    Gorbyk P, Lerman L, Petranovska A & Turanska S (2014) Magnetosensitive nanocomposites with functions of medico-biological nanorobots: synthesis and properties. In book: Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. 161–198Google Scholar
  13. 13.
    Gorbyk, P., Petranovska, A., Usov, D. & Storozhuk, L. 2012. Nanocapsule with nanorobots function. Patent of Ukraine Google Scholar
  14. 14.
    Gorbyk P, Petranovskaya A, Pilipchuk E, Abramov N, Oranskaya E, Korduban A (2012) Synthesis of magnetosensitive Gd-containing nanostructures. Chem Phys Technol Surface/Khimiya, Fizyka ta Tekhnologiya Poverhni 2Google Scholar
  15. 15.
    Gorbyk P, Turov V (2011) Nanomaterials and nanocomposites in medicine, biology, ecology. Naukova Dumka, KyivGoogle Scholar
  16. 16.
    Grumezescu A (2016) Fabrication and self-assembly of Nanobiomaterials. Appl Nanobiomater, William AndrewGoogle Scholar
  17. 17.
    Huang C, Zhou Y, Tang Z, Guo X, Qian Z, Zhou S (2011) Synthesis of multifunctional Fe3O4 core/hydroxyapatite shell nanocomposites by biomineralization. Dalton Trans 40:5026–5031CrossRefGoogle Scholar
  18. 18.
    Iwasaki T (2013) Mechanochemical synthesis of magnetite/hydroxyapatite nanocomposites for hyperthermia. In: Moshe H, Mastai Y (eds.) Materials science-advanced topics. InTech Open, UKGoogle Scholar
  19. 19.
    Kule C, Ondrejickova O, Verner K (1994) Doxorubicin, daunorubicin, and mitoxantrone cytotoxicity in yeast. Mol Pharmacol 46:1234–1240Google Scholar
  20. 20.
    Levy L, Sahoo Y, Kim K-S, Bergey EJ, Prasad PN (2002) Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications. Chem Mater 14:3715–3721CrossRefGoogle Scholar
  21. 21.
    Lowe MP (2002) MRI contrast agents: the next generation. Aust J Chem 55:551–556CrossRefGoogle Scholar
  22. 22.
    Mir A, Mallik D, Bhattacharyya S, Mahata D, Sinha A, Nayar S (2010) Aqueous ferrofluids as templates for magnetic hydroxyapatite nanocomposites. J Mater Sci Mater Med 21:2365–2369CrossRefGoogle Scholar
  23. 23.
    Patel S, Sprung AU, Keller BA, Heaton VJ, Fisher LM (1997) Identification of yeast DNA topoisomerase II mutants resistant to the antitumor drug doxorubicin: implications for the mechanisms of doxorubicin action and cytotoxicity. Mol Pharmacol 52:658–666CrossRefGoogle Scholar
  24. 24.
    Petranovska A, Abramov N, Turanska S, Gorbyk P, Kaminskiy A, Kusyak N (2015) Adsorption of cis-dichlorodiammineplatinum by nanostructures based on single-domain magnetite. J Nanostruct Chem 5:275–285CrossRefGoogle Scholar
  25. 25.
    Petranovskaya A, Turelik M, Pilipchuk E, gorbik P, Korduban A, Ivashishin O (2013) Formation of biomimetic hydroxyapatite on the surface of titanium. Metallophys Latest Technol 35:1567–1584Google Scholar
  26. 26.
    Pharmacopoeia TE (2008) The European Pharmacopoeia sixth edition, 2008. In: ISBNGoogle Scholar
  27. 27.
    Pylypchuk E, Gorbyk P (2014) B- and Gd-containing nanomaterials and nanocomposites for neutron capture therapy. Surface:150–183Google Scholar
  28. 28.
    Pylypchuk E, Petranovska A, Gorbyk P (2012) Synthesis and properties of nanocomposites based on magnetite modified with DTPA. Nanostrukturnoye Materialovedeniye (Nanostruct Mater Sci) 3:47Google Scholar
  29. 29.
    Pylypchuk IV, Kołodyńska D, Gorbyk P (2017) Gd (III) adsorption on the DTPA-functionalized chitosan/magnetite nanocomposites. Separat Sci Technol 53(7):1006–1016CrossRefGoogle Scholar
  30. 30.
    Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk P (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:168ADSCrossRefGoogle Scholar
  31. 31.
    Pylypchuk IV, Petranovska AL, Turelyk MP, Gorbyk PP (2014) Formation of biomimetic hydroxyapatite coating on titanium plates. Mater Sci 20:328–332Google Scholar
  32. 32.
    Pylypchuk IV, Petranovskaya A, Gorbyk P, Korduban A, Markovsky P, Ivasishin O (2015) Biomimetic hydroxyapatite growth on functionalized surfaces of Ti-6Al-4V and Ti-Zr-Nb alloys. Nanoscale Res Lett 10:338ADSCrossRefGoogle Scholar
  33. 33.
    Pylypchuk IV, Zubchuk YO, Petranovskaya A, Turanska S, Gorbyk P (2015) Synthesis and properties of Fe3O4/HA/pamidronic acid/DTPA-Gd nanocomposites. Хімія, фізика та технологія поверхні 6:326–335Google Scholar
  34. 34.
    Sadighian S, Hosseini-Monfared H, Rostamizadeh K, Hamidi M (2015) pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Advan Pharmaceut Bull 5:115Google Scholar
  35. 35.
    Saenko YV, Shutov A, Rastorgueva E (2010) Doxorubicin and menadione decrease cell proliferation of Saccharomyces cerevisiae by different mechanisms. Cell Tissue Biol 4:332–336CrossRefGoogle Scholar
  36. 36.
    Shpak A, Gorbyk P (2007) Physical chemistry of Nanomaterials and Supramolecular structures. Naukova Dumka, KyivGoogle Scholar
  37. 37.
    Shpak AP, Gorbyk PP (2010) Nanomaterials and supramolecular structures. Physics chemistry and applications. Springer, NetherlandsGoogle Scholar
  38. 38.
    Shylova OA, Shylov V (2003) Nanocomposite oxide and hybrid organo-inorganic materials produced by the sol-gel method. Nanosyst Nanomater Nanotechnol 1:9–83Google Scholar
  39. 39.
    Turanska S, Kusyak A, Petranovska A, Turov V, Gorbyk P (2016) Cytotoxic activity of magnet-quided doxorubicin-based nanocomposites with Saccharomyces cerevisiae cells as an example. Chem Phys Technol Surface 7:236–245Google Scholar
  40. 40.
    Turelik M, Gorobets S, Makedonska A, Gorbik P (2012) Biofunctionalization of nanocomposites on the basis of magnet-ite, modified by meso-2, 3-dimercaptosuccinic acid. Research Bulletin of NTUU” Kyiv Polytechnic Institute. 149–154Google Scholar
  41. 41.
    Wahajuddin SA (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ie. V. Pylypchuk
    • 1
  • M. V. Abramov
    • 1
  • A. L. Petranovska
    • 1
  • S. P. Turanksa
    • 1
  • T. M. Budnyak
    • 1
  • N. V. Kusyak
    • 2
  • P. P. Gorbyk
    • 1
  1. 1.Chuiko Institute of Surface Chemistry of National Academy of Sciences of UkraineKyivUkraine
  2. 2.Ivan Franko Zhytomyr State UniversityZhytomyrUkraine

Personalised recommendations