Advertisement

Directional Synthesis of SnO2-Based Nanostructures for Use in Gas Sensors

  • Svitlana Nahirniak
  • Tetiana Dontsova
  • Ihor Astrelin
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)

Abstract

The influence of synthesis method (thermal, sol-gel, CVD) on structure and morphology of tin (IV) oxide powders has been considered. The comparison of physical and chemical properties of the obtained powders has been investigated. The rational conditions for the directed synthesis of zero-dimensional (0D) and one-dimensional (1D) SnO2 structures by chemical vapor deposition (CVD) method have been found. It was shown that 0D and 1D SnO2 nanostructures have not only visual differences but also vary in physical, chemical, optical, and electrical properties. In particular, they differ in intensity of peaks on X-ray diffraction patterns, values of specific surface area, absorption bands in infrared spectra, and nature of current-voltage dependencies. The effect of morphology and modification on optical and electrical characteristics and gas sensitivity of tin (IV) oxide nanostructures of different morphology has been established.

Notes

Acknowledgments

The authors thank the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” for support in conducting this research.

References

  1. 1.
    Munnix S, Schmeits M (1982) Surface electronic structure of tin (IV) oxide. Solid State Commun 43:867–873CrossRefADSGoogle Scholar
  2. 2.
    Krivetskiy VV, Rumyantseva MN, Gaskov AM (2013) Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russ Chem Rev 82(10):917–941 [In Russian]CrossRefADSGoogle Scholar
  3. 3.
    Bochenlov VE, Sergeev GB (2010) Sensitivity, selectivity and stability of gas-sensitive metal-oxide nanostructures. In: Metal oxide nanostructures and their applications, vol 3. American Scientific. Publishers, USA, pp 31–52Google Scholar
  4. 4.
    Nagirnyak SV, Dontsova TA (2015) Ways for improvement selectivity of semiconductor gas sensors. Young Sci 10(25):15–17Google Scholar
  5. 5.
    Miller TA, Bakrania SD, Perez V, Wooldridge MS (2006) Nanostructured tin dioxide materials for gas sensor applications. Funct Nanomater 30:1–24Google Scholar
  6. 6.
    Tournier G, Pijolat C, Lalauze R, Patissier B (1995) Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium. Sensors Actuators 27:24–28CrossRefGoogle Scholar
  7. 7.
    Wang S, Zhao Y, Huang J, Wang Y, Wu S et al (2006) Low-temperature carbon monooxide gas sensors based gold/tin dioxide. Solid State Electron 50:1728–1731CrossRefADSGoogle Scholar
  8. 8.
    Choi JK, Hwang IS, Kim SJ, Park JS, Park SS (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sensors Actuators 150:191–199CrossRefGoogle Scholar
  9. 9.
    Schwarz JA (1995) Methods for preparation of catalytic materials. Chem Rev 95:477–510CrossRefGoogle Scholar
  10. 10.
    Leghrib R, Felten A, Pireaux JJ, Llobet E (2011) Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Films 520:966–970CrossRefADSGoogle Scholar
  11. 11.
    Dontsova TA, Ivanenko IM, Astrelin IM, Nagirnyak SV (2014) Stabilization of nanoscale tin (IV) oxide on the surface of carbon nanotubes. J Electr Eng 2:34–38Google Scholar
  12. 12.
    Ahlers S, Müller G, Doll T (2005) A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sensors Actuators B 107:587–599CrossRefGoogle Scholar
  13. 13.
    Dontsova TA, Nagirnyak SV, Zhorov VV, Yasiievych YV (2017) SnO2 nanostructures: effect of processing parameters on their structural and functional properties. Nanoscale Res Lett 12(332):1–7Google Scholar
  14. 14.
    Petruk VH, Kravec AH (2007) Sensors based on SnO2 nanoparticles for carbon monoxide CO detection. J Tech Phys 77(2):86–90Google Scholar
  15. 15.
    Pan J-M, Maschhoff BL, Diebold U, Madey TE (1993) Structural study of ultrathin metal films on TiO2 using LEED, ARXPS and MEED. Surf Sci 291(3):381–394CrossRefADSGoogle Scholar
  16. 16.
    Nagirnyak SV, Dontsova TA, Astrelin IM (2015) One-dimensional tin (IV) oxide nanostructures as gas-sensing materials. Res Bull Natl Tech Univ Ukr «Kyiv Polytech Institute» 5:119–128Google Scholar
  17. 17.
    Alivasators AP (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271(5251):933–937CrossRefADSGoogle Scholar
  18. 18.
    Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853CrossRefADSGoogle Scholar
  19. 19.
    Pan J, Shen H, Mathur S (2012) One dimensional SnO2 nanostructures: synthesis and application. J Nanotechnol 2012:1–12CrossRefGoogle Scholar
  20. 20.
    Nagirnyak SV, Dontsova TA, Astrelin IM, Alekseev OF, Romanenko YM (2012) Synthesis and characterization of nanosized tin (IV) oxide powders from tin (II) oxalate. Res Bull Natl Tech Univ Ukr «Kyiv Polytechnic Institute» 2:151–155 [In Ukrainian]Google Scholar
  21. 21.
    Nagirnyak SV, Dontsova TA (2012) The method of synthesis of superdispersed tin (IV) oxide by sol-gel method. Thesis, Kyiv (Ukraine) [In Ukrainian]Google Scholar
  22. 22.
    Nagirnyak SV, Lutz VA, Dontsova TA, Astrelin IM (2016) The effect of the synthesis conditions on morphology of tin (IV) oxide obtained be vapor transport method. In: Nanophysics, nanophotonics, surface studies, and applications, vol 183. Springer, Springer Proceedings in Physics, Europe, pp 331–342CrossRefGoogle Scholar
  23. 23.
    Nagirnyak SV, Lutz VA, Dontsova TA, Astrelin IM (2016) Synthesis and properties of tin (IV) oxide obtained by chemical vapor deposition method. Nanoscale Res Lett 11(343):1–7Google Scholar
  24. 24.
    Lutz VA, Nagirnyak SV, Dontsova TA (2015) Optical properties of tin (IV) oxide nanoparticles obtained by CVD method. Young Sci –12(27), P1:61–64 [In Ukrainian]Google Scholar
  25. 25.
    Nagirnyak S, Zhorov V, Dontsova T, Astrelin I (2016) Electrical properties of pure and Ag-doped SnO2 nanostructures obtained by chemical vapor deposition technique. Nano Stud 13:233–240Google Scholar
  26. 26.
    Zhai T, Fang X, Liao M, Xu X, Zeng H, Yoshio B, Golberg D (2009) A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9:6504–6529CrossRefGoogle Scholar
  27. 27.
    Nagirnyak S, Dontsova TA (2017) Effect of modification/doping on gas sensing properties of SnO2. Nano Res Appl 2(8):1–5Google Scholar
  28. 28.
    Lutz VA, Nagirnyak SV, Dontsova TA (2016) Synthesis and properties of doped and undoped tin (IV) oxide. Eur J Sci Res 1(13), V.II:881–889 [In Ukrainian]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Svitlana Nahirniak
    • 1
  • Tetiana Dontsova
    • 2
  • Ihor Astrelin
    • 3
  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Faculty of Chemical TechnologyKyivUkraine
  2. 2.Department of Inorganic Substances Technology, Water Treatment and General Chemical Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  3. 3.Department of Chemistry, National Technical University of Ukraine “KPI”KyivUkraine

Personalised recommendations