Advertisement

Nanostructured Functional Coatings of Iron Family Metals with Refractory Elements

  • Maryna V. Ved’
  • Nikolay D. Sakhnenko
  • Iryna Yu. Yermolenko
  • Tatyana A. Nenastina
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 214)

Abstract

Principles of Fe-Co-W, Fe-Co-Mo, and Co-Mo-Zr alloys’ electrodeposition from complex based on Fe (III) citrate and citrate-pyrophosphate electrolytes are discussed. It is shown that deposition of ternary alloys proceeds through competitive reduction of cobalt and tungsten (molybdenum) with iron. With increasing ligand concentration, coatings are enriched with a refractory component; however, increasing current density favors a reverse trend. The effect of both current density and pulse on-/off-time on the quality, composition, and surface morphology of the electrolytic alloys was determined. The application of pulsed electrolysis provides increasing tungsten content up to 13 at.% and Mo, 38 at.%, at current efficiency of 70–75%. It was found that the alloying metal content in Co-Mo-Zr coating depends on the current density and on-/off-times extremely, and maximum Mo and Zr content corresponds to 4–6 A/dm2 and on-/off-time of 2–10 ms. Globular surface of Fe-Co-W(Mo) and Co-Mo-Zr coatings is caused by refractory metal incorporation, and crystalline and amorphous parts of the structure are visualized by X-ray spectroscopy, including intermetallic phases Co7W6, Fe7W6, Fe7Мо, Fe7Co, and FeCo along with α-Fe and Fe3C. The crystallite size of the amorphous part is nearly 7–8 nm. It was detected that the coercive force for synthesizing Fe-Co-W and Fe-Co-Mo films is 50–60 Oe and 7–10 Oe, respectively, which corresponds to the soft magnetic materials. Corrosion resistance of the coatings Fe-Co-W and Fe-Co-Mo is 1.3–2.0 orders of magnitude higher than the substrate parameters as follows from data of polarization resistance method and electrode impedance spectroscopy. It was shown that Fe-Co-W, Fe-Co-Mo, and Co-Mo-Zr alloys exhibit superior catalytic properties in hydrogen electrolytic evolution from acidic media which are not inferior a platinum electrode. The deposits Co-Mo-Zr with zirconium content 2–4 at.% demonstrate high catalytic properties in the carbon(II) oxide conversion. This confirms the efficiency of materials as catalysts for the gaseous wastes purification and gives the reason to recommend them as catalysts for redox processes activating by oxygen as well as electrode materials for redox batteries.

Keywords

Electrodeposition Corrosion resistance Polarization resistance Impedance spectroscopy Refractory metals Ternary alloys Amorphous phase Catalytic activity Soft magnetic films 

References

  1. 1.
    Tsyntsaru N, Cesiulis H, Donten M, Sort J, Pellicer E, Podlaha-Murphy EJ (2012) Modern trends in tungsten alloys electrodeposition with iron group metals. Surf Eng Appl Electrochem 48(6):491–520CrossRefGoogle Scholar
  2. 2.
    Podlaha EJ, Landolt D (1997) Induced codeposition: III. Molybdenum alloys with nickel, cobalt and iron. J Electrochem Soc 144(5):1672–1680CrossRefGoogle Scholar
  3. 3.
    Yar-Mukhamedova G, Ved' M, Sakhnenko N, Karakurkchi A, Yermolenko I (2016) Iron binary and ternary coatings with molybdenum and tungsten. Appl Surf Sci 383:346–352.  https://doi.org/10.1016/j.apsusc.2016.04.046 ADSCrossRefGoogle Scholar
  4. 4.
    Capel H, Shipway PH, Harris SJ (2003) Sliding wear behaviour of electrodeposited cobalt–tungsten and cobalt–tungsten–iron alloys. Wear 255:917–923.  https://doi.org/10.1016/S0043-1648(03)00241-2 CrossRefGoogle Scholar
  5. 5.
    Ved’ MV, Sakhnenko MD, Karakurkchi HV, Ermolenko IY, Fomina LP (2016) Functional properties of Fe−Mo and Fe−Mo−W galvanic alloys. Mater Sci 51(5):701–710.  https://doi.org/10.1007/s11003-016-9893-5 CrossRefGoogle Scholar
  6. 6.
    Feng-jiao H, Jing-tian L, Xin L, Yu-ning H (2004) Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits. Trans Nonferrous Met Soc China 14(5):901–906Google Scholar
  7. 7.
    Tsyntsaru N, Dikusar A, Cesiulis H, Celis J-P, Bobanova Z, Sidel’nikova S, Belevskii S, Yu Y, Bersirova O, Kublanovskii V (2009) Tribological and corrosive characteristics of electrochemical coatings based on cobalt and iron superalloys. Powder Metallurgy and Metal Ceramics 48(7–8):419–428CrossRefGoogle Scholar
  8. 8.
    Yapontseva YS, Dikusar AI, Kyblanovskii VS (2014) Study of the composition, corrosion, and catalytic properties of Co-W alloys electrodeposited from a citrate pyrophosphate electrolyte. Surf Engin Appl Electrochem 50:330.  https://doi.org/10.3103/S1068375514040139 CrossRefGoogle Scholar
  9. 9.
    Gomez E, Pellicer E, Valles E (2001) Electrodeposited cobalt_molybdenum magnetic materials. J Electroanal Chem 517:109–116CrossRefGoogle Scholar
  10. 10.
    Gomez E, Kipervaser ZG, Pellicer E, Valles E (2004) Extracting deposition parameters for cobalt–molybdenum alloy from potentiostatic current transients. Phys Chem Chem Phys 6:1340–1344CrossRefGoogle Scholar
  11. 11.
    Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. John Wiley & Sons Ltd, Chichester, pp 121–137CrossRefGoogle Scholar
  12. 12.
    Tomantschger K, Kordesch KV (1989) Structural analysis of alkaline fuel cell electrodes and electrode materials. J Power Sources:25195–25214Google Scholar
  13. 13.
    Skyllas-Kazakos M, Chakrabarti MH, Hajimolana S et al (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79CrossRefGoogle Scholar
  14. 14.
    Haile SM (2003) Fuel cell materials and components. Acta Mater:515981–516000Google Scholar
  15. 15.
    Sakhnenko ND, Ved MV, Hapon YK, Nenastina TA (2015) Functional coatings of ternary alloys of cobalt with refractory metals. Russ J Appl Chem 87:1941–1945.  https://doi.org/10.1134/S1070427215012006X CrossRefGoogle Scholar
  16. 16.
    Kublanovsky VS, Yapontseva YS (2014) Electrocatalytic properties of Co-Mo alloys electrodeposited from a citrate-pyrophosphate electrolyte. Electrocatalysis 5:372–378.  https://doi.org/10.1007/s12678-014-0197-y CrossRefGoogle Scholar
  17. 17.
    Glushkova M, Bairachna T, Ved M, Sakhnenko M (2013) Electrodeposited cobalt alloys as materials for energy technology. In: MRS proceedings, vol 1491. Cambridge University Press, pp mrsf12–mr1491Google Scholar
  18. 18.
    Ramanauskas R, Gudavičiūtė L, Juškėnas R (2008) Effect of pulse plating on the composition and corrosion properties of Zn–Co and Zn–Fe alloy coatings. Chemija 19:7–13Google Scholar
  19. 19.
    Ved’ MV, Sakhnenko ND, Karakurchi AV, Zyubanova SI (2014) Electrodeposition of iron–molybdenum coatings from citrate electrolyte. Russ J Appl Chem 87:276−282.  https://doi.org/10.1134/S1070427214030057 CrossRefGoogle Scholar
  20. 20.
    Shao II, Vereecken PM, Chien CL, Cammarata RC, Searson PC (2003) Electrochemical deposition of FeCo and FeCoV alloys. J Electrochem Soc 150:C184–C188CrossRefGoogle Scholar
  21. 21.
    Tsyntsaru N, Cesiulis H, Budreika A (2012) The effect of electrodeposition conditions and post-annealing on nanostructure of Co–W coatings. Surf Coat Technol 206:4262–4269CrossRefGoogle Scholar
  22. 22.
    Grabco DZ, Dikusar IA, Petrenko VI, Harea EE (2007) Micromechanical properties of Co–W alloys electrodeposited under pulse conditions. Surf Eng and Appl Electrochem 43:11–17CrossRefGoogle Scholar
  23. 23.
    Silkin SA, Gotelyak AV, Tsyntsaru N, Dikusar AI, Kreivaitis R, Padgurskas J (2016) Effect of bulk current density on tribological properties of Fe-W, Co-W and Ni-W coatings. În: Proceedings of the 8th International Scientific Conference “BALTTRIB 2015”. Published on-line 25 February 2016 by Aleksandras Stulginskis University. Kaunas, Lithuania, 51–56. Doi:  https://doi.org/10.15544/balttrib.2015.10
  24. 24.
    Ma SL, Xi X, Nie Z, Dong T, Mao Y (2017) Electrodeposition and characterization of co-W alloy from regenerated tungsten. Int J Electrochem Sci 12:1034–1051.  https://doi.org/10.20964/2017.02.37 CrossRefGoogle Scholar
  25. 25.
    Vernickaite E, Tsyntsaru N, Cesiulis H (2016) Electrodeposited co-W alloys and their prospects as effective anode for methanol oxidation in acidic media. Surf & Coatings Tech  https://doi.org/10.1016/j.surfcoat.2016.07.049 CrossRefGoogle Scholar
  26. 26.
    Elezović N, Grgur BN, Krstajić NV, Jović VD (2005) Electrodeposition and characterization of Fe–Mo alloys as cathodes for hydrogen evolution in the process of chlorate production. J Serb. Chem Soc 70(6):879–889Google Scholar
  27. 27.
    Gomez E, Pellicer E, Alcobe X, Valles E (2004) Properties of co-Mo coatings obtained by electrodeposition at pH 6.6. J Solid State Eletrochem 8:497–504.  https://doi.org/10.1007/s10008-004-0495-z CrossRefGoogle Scholar
  28. 28.
    Danilov FI, Sknar IV, Sknar YE (2014) Electroplating of Ni-Fe alloys from methanesulfonate electrolytes. Russ J Electrochem 50:293–296CrossRefGoogle Scholar
  29. 29.
    Weston DP, Harris SJ, Shipway PH, Weston NJ, Yap GN (2010) Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath. Electrochim Acta 55:5695–5708CrossRefGoogle Scholar
  30. 30.
    Ved MV, Sakhnenko MD (2010) Katalitychni ta zakhysni pokryttia splavamy i skladnymy oksydamy: elektrokhimichnyi syntez, prohnozuvannia vlastyvostei [Tekst]: monohrafiia. Kharkiv NTU “KhPI” 272Google Scholar
  31. 31.
    Ćirović N, Spasojević P, Ribić-Zelenović L, Mašković P, Spasojević M (2015) Synthesis, structure and properties of nickel-iron-tungsten alloy electrodeposits PART I: effect of synthesis parameters on chemical composition, microstructure and morphology. Sci Sinter 47:347–365.  https://doi.org/10.2298/SOS1503347C CrossRefGoogle Scholar
  32. 32.
    Yermolenko IY, Ved’ MV, Karakurkchi AV, Sakhnenko ND, Kolupaieva ZI (2017) Electrochemical behavior of Fe3+–WO4 2−–Cit3− and Fe3+–MoO4 2−–WO4 2−–Cit3− systems. The Issues of Chemistry and Chemical Technology 2(III):4–14Google Scholar
  33. 33.
    Labardi M, Allegrini M, Salerno M, Fredriani C, Ascoli C (1994) Dynamical friction coefficient map using a scanning force and friction force microscope. Appl Phys 59:3CrossRefGoogle Scholar
  34. 34.
    Karakurkchi AV, Ved' MV, Sakhnenko ND et al (2015) Functional properties of multicomponent galvanic alloys of iron with molybdenum and tungsten. Func Mater 22:181–187.  https://doi.org/10.15407/fm22.02.181 CrossRefGoogle Scholar
  35. 35.
    Glushkova MO, Ved MV, Sakhnenko MD (2013) Corrosion properties of cobalt–silver alloy electroplates. Mater Sci 49:292–297.  https://doi.org/10.1007/s11003-013-9613-3 CrossRefGoogle Scholar
  36. 36.
    Ved’ M, Glushkova M, Sakhnenko N (2013) Catalitic properties of binary and ternary alloys based on silver. Func Mater 2087–91.  https://doi.org/10.15407/fm20.01.087 CrossRefGoogle Scholar
  37. 37.
    Yermolenko IY, Ved’ MV, Zyubanova SI, Androshchuk DS (2011) Polilihandni elektrolity dlya anodnoho rozchynennya splaviv vol’framu [Poliligand electrolytes for anodic dissolution of tungsten alloys]. The Issues of Chemistry and Chemical Technology 4:192–195Google Scholar
  38. 38.
    Tabakovic I, Gong J, Riemer S, Kautzky M (2015) Influence of surface roughness and current efficiency on composition gradients of thin NiFe films obtained by electrodeposition electrochemical/electroless deposition. J Electrochem Soc 162:D102–D108CrossRefGoogle Scholar
  39. 39.
    Gómez E, Pellicer E, Vallés E (2004) Electrodeposition of soft-magnetic cobalt–molybdenum coatings containing low molybdenum percentages. J Electroanal Chem 568:29–36  https://doi.org/10.1016/j.jelechem.2003.12.032 CrossRefGoogle Scholar
  40. 40.
    Ghaferi Z, Sharafi S, Bahrololoom ME (2016) The role of electrolyte pH on phase evolution and magnetic properties of CoFeW codeposited films. Appl Surf Sci 375(1):35–41.  https://doi.org/10.1016/j.apsusc.2016.03.063 ADSCrossRefGoogle Scholar
  41. 41.
    Yermolenko IY, Ved MV, Sakhnenko ND, Sachanova YI (2017) Composition, morphology, and topography of galvanic coatings Fe-Co-W and Fe-Co-Mo. Nanoscale Res Lett 12(1):352.  https://doi.org/10.1186/s11671-017-2128-3 ADSCrossRefGoogle Scholar
  42. 42.
    Karakurkchi AV, Ved’ MV, Sakhnenko ND, Ermolenko IY (2015) Electrodeposition of iron–molybdenum–tungsten coatings from citrate electrolytes. Russ J Appl Chem 88:1860–1869.  https://doi.org/10.1134/S1070427215011018X CrossRefGoogle Scholar
  43. 43.
    Li J, Meng S, Han J, Zhang X (2008) Valence electron structure and properties of the ZrO2. Sci China Ser E-Technol Sci 51:1858–1866.  https://doi.org/10.1007/s11431-008-0119-4 CrossRefGoogle Scholar
  44. 44.
    Hu J, Zhang C, Cui B et al (2011) In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol-gel method. Appl Surf Sci 257:8772–8777ADSCrossRefGoogle Scholar
  45. 45.
    Cesiulis H, Tsyntsaru N, Budreika A, Skridaila N (2010) Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions. Surf Engineering Appl Electrochem 46:406–415.  https://doi.org/10.3103/S1068375510050030 CrossRefGoogle Scholar
  46. 46.
    Yar-Mukhamedova GS (2000) Influence of thermal treatment on corrosion resistance of chromium and nickel composite coatings. Mater Sci 36:922–924CrossRefGoogle Scholar
  47. 47.
    Yar-Mukhamedova GS (2000) Investigation of corrosion resistance of metallic composite thin-film systems before and after thermal treatment by the “Corrodkote” method. Mater Sci 37:140–143CrossRefGoogle Scholar
  48. 48.
    Gennero MR, Chialvo AC (1998) Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes. Electrochim Acta 44:841–851CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maryna V. Ved’
    • 1
  • Nikolay D. Sakhnenko
    • 1
  • Iryna Yu. Yermolenko
    • 1
  • Tatyana A. Nenastina
    • 1
  1. 1.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations