Advertisement

Mobility and Locomotion

  • Graham E. Rotheray
Chapter
Part of the Zoological Monographs book series (ZM, volume 4)

Abstract

Movement of both the whole body and individual components is dealt with in this chapter. The aim is to show that movement is a source of diversity in cyclorrhaphan larvae and that characterising it simply in terms of creeping and crawling underestimates its specialised nature. In cyclorrhaphan larvae, Diptera groundplan states of leglessness and peristalsis are retained. These characteristics correlate probably to development taking place submerged in dense media where streamlining is an advantage. Films of movement in cyclorrhaphan larvae show that peristalsis is developed and specialisations correlate to an array of particular circumstances. Attachment structures that are critical to movement vary from spicules to suckers and larvae are able to tunnel, burrow, swim, dive, jump and traverse complex topographies such as plant surfaces. Larvae specialised for movement across plants have prehensile qualities and combine peristalsis with additional muscular movements and enhanced attachment capability involving grasping organs comprising segment modules, the head pump, sticky saliva and faeces.

References

  1. Barraclough DA (1983) The biology and immature stages of some Sepedon snail-killing flies in Natal (Diptera: Sciomyzidae). Ann Natal Mus 25:293–317Google Scholar
  2. Bauer G (1986) Life-history strategy of Rhagoletis alternata (Diptera: Trypetidae), a fruit fly operating in a ‘non-interactive’ system. J Anim Ecol 55:785–794CrossRefGoogle Scholar
  3. Berg CO (1953) Sciomyzid larvae (Diptera) that feed on snails. J Parasitol 39:630–636CrossRefGoogle Scholar
  4. Berrigan D, Leighton JRB (1993) Bioenergetic and kinematic consequences of limblessness in larval Diptera. J Exp Biol 179:245–259PubMedGoogle Scholar
  5. Berrigan D, Pepin DJ (1995) How maggots move: allometry and kinematics of crawling in Larval Diptera. J Insect Physiol 41:329–337Google Scholar
  6. Bolwig N (1946) Sense and sense organs of the anterior end of the house fly larvae. Vidensk Medd Dan Natarhist Foren 109:81–217Google Scholar
  7. Bounduriansky R (2002) Leaping behaviour and responses to moisture and sound in larvae of piophilid flies. Can Entomol 134:647–656CrossRefGoogle Scholar
  8. Burtt E, Jackson CHN (1951) Illustrations of Tsetse Larvae. Bull Entomol Res 41:523–527CrossRefGoogle Scholar
  9. Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster. Springer, BerlinCrossRefGoogle Scholar
  10. Chandler AEF (1969) Locomotory behaviour of first instar larvae of aphidophagous Syrphidae (Dipt.) after contact with aphids. Anim Behav 17:673–678CrossRefGoogle Scholar
  11. Cobb M (1999) What and how do maggots smell? Biol Rev 74:425–459CrossRefGoogle Scholar
  12. Courtney GW, Sinclair BJ, Meier R (2000) Morphology and terminology of Diptera larvae. In: Papp L, Darvas B (eds) Contributions manual Palaearctic Diptera, vol 1. Science Herald, Budapest, pp 85–161Google Scholar
  13. Ferrar P (1987) A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomonograph 8:1–907Google Scholar
  14. Frew JGH (1923) On the larval anatomy of the gout fly of barley (Chlorops taeniopus Meig.) and two related acalypterate muscids, with notes on their winter host plants. Proc Zool Soc London:783–821Google Scholar
  15. Godoy-Herrera R, Alareon M, Caceres H, Loyola I, Navarrete I, Vega JL (1992) The development of photoresponse in Drosophila melanogaster larvae. Rev Chil Hist Nat 65:91–10Google Scholar
  16. Green CH, Burnet B, Connolly KJ (1983) Organisation and patterns of inter- and intraspecific variation in the behaviour of Drosophila larvae. Anim Behav 31:282–291CrossRefGoogle Scholar
  17. Greenberg B (1990) Behavior of postfeeding larvae of some Calliphoridae and a Muscid (Diptera). Ann Entomol Soc Am 83:1210–1214CrossRefGoogle Scholar
  18. Grossfield J (1978) Non-sexual behavior of Drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2B. Academic, New York, pp 1–126Google Scholar
  19. Günther MN, Nettesheim G, Shubeita GT (2016) Quantifying and predicting Drosophila larvae crawling phenotypes. Sci Rep 10:1–10.  https://doi.org/10.1038/srep27972 CrossRefGoogle Scholar
  20. Hartley JC (1963) The cephalopharyngeal apparatus of syrphid larvae and its relationship to other Diptera. Proc Zool Soc Lond 141:261–280CrossRefGoogle Scholar
  21. Heckscher ES, Lockery SR, Doe CQ (2012) Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J Neurosci 32:12460–12471CrossRefGoogle Scholar
  22. Hering EM (1951) Biology of the leaf miners. Dr W Junk, The HagueCrossRefGoogle Scholar
  23. Hewitt CG (1914) On the predaceous habits of Scatophaga: a new enemy of Musca domestica. Can Entomol 46:2–3CrossRefGoogle Scholar
  24. Hinton HE (1955) On the structure, function and distribution of the prolegs of the Panorpoidea, with a criticism of the Berlese-Imms theory. Trans R Ent Soc Lond 106:455–534CrossRefGoogle Scholar
  25. Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Biol 17:2105–2116CrossRefGoogle Scholar
  26. Keilin D (1915) Recherches sur les larves de Dipteres Cyclorrhaphes. Bull Sci Fr Bel 49:15–198Google Scholar
  27. Kohsaka H, Okusawa S, Itakura Y, Fushiki A, Nose A (2012) Development of larval motor circuits in Drosophila. Develop Growth Differ 54:408–419CrossRefGoogle Scholar
  28. Lahiri S, Shen K, Klein M, Tang A, Kane E, Gershow M, Garrity P, Samuel ADT (2011) Two alternating motor programs drive navigation in Drosophila larva. PLoS One 6:e23180CrossRefGoogle Scholar
  29. Laska P (1999) The air suction through mouths of Episyrphus balteatus larvae (Diptera, Syrphidae). Dipterol Bohemoslov 9:125–126Google Scholar
  30. Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ (2003) Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 6:267–273CrossRefGoogle Scholar
  31. MacGowan I, Rotheray GE (2008) British Lonchaeidae (Diptera, Cyclorrhapha, Acalyptratae). Handbks Ident Br Insects 10:1–142Google Scholar
  32. Maitland D (1992) Locomotion by jumping in the Mediterranean fruit fly larva Ceratitis capitata. Nature (London) 355:159–161CrossRefGoogle Scholar
  33. Marinov M, Li D, Bennett S (2015) An observation of leaping behaviour in larvae of Drosophilidae (Diptera). Weta 50:30–37Google Scholar
  34. Mathis WN, Hogue CL (1986) Description of a new species of the shore fly genus Diedrops (Diptera: Ephydridae) from Colombia. Contribs Sci 377:21–26Google Scholar
  35. McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (1981) Manual of Nearctic Diptera, Research Branch. Agriculture Canada Monograph No. 27, vol 1Google Scholar
  36. McNeill AR (1992) Exploring biomechanics: animals in motion. Freeman, New York, NY/OxfordGoogle Scholar
  37. Medler JT, Adenuga AO (1969) Observations on larvae of Leucophenga proxima Adams (Diptera: Drosophilidae) living in spittle-masses of Ptyelus grossus (Hemiptera: Cercopidae). Bull Ent Soc Nigeria 2:51–53Google Scholar
  38. Meier R (1995) Cladistic analysis of the Sepsidae (Cyclorrhapha: Diptera) based on a comparative scanning electron microscopic study of larvae. Syst Entomol 20:99–128CrossRefGoogle Scholar
  39. Menees JH (1962) The skeletal elements of the gnathocephalon and its appendages in the larvae of higher Diptera. Ann Entomol Soc Am 55:607–616CrossRefGoogle Scholar
  40. Neugart C, Schneeberg K, Beutel RG (2009) The morphology of the larval head of Tipulidae (Diptera, Insecta) - the dipteran groundplan and evolutionary trends. Zool Anz 248:213–235CrossRefGoogle Scholar
  41. Nye IWB (1958) The external morphology of Dipterous larvae occurring in the Gramineae of Britain. Trans R Ent Soc Lond 110:411–487CrossRefGoogle Scholar
  42. Oppliger FY, Guerin PM, Vlimant M (2000) Neurophysiological and behavioural evidence for an olfactory function for the dorsal organ and a gustatory one for the terminal organ in Drosophila melanogaster larvae. J Insect Physiol 46:135–144CrossRefGoogle Scholar
  43. Roberts MJ (1969) Structure of the mouthparts of the larvae of the flies Rhagio and Sargus in relation to feeding habits. J Zool (Lond) 159:381–398CrossRefGoogle Scholar
  44. Roberts MJ (1971) The structure of the mouthparts of some calypterate dipteran larvae in relation to their feeding habits. Acta Zool 52:171–188CrossRefGoogle Scholar
  45. Rotheray GE (1988) Morphology and feeding behaviour of the leaf-mining larva of Cheilosia semifasciata (Diptera: Syrphidae). J Nat Hist 22:865–873CrossRefGoogle Scholar
  46. Rotheray GE (2012) Morphology of the puparium and breeding sites of eight species of Heleomyzidae (Diptera). J Nat Hist 46:2075–2102CrossRefGoogle Scholar
  47. Rotheray GE (2014) Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900:50–76CrossRefGoogle Scholar
  48. Rotheray GE, Gilbert FS (1989) The phylogeny and systematics of European predacious Syrphidae (Diptera) based on larval and puparial stages. Zool J Linnean Soc 95:29–70CrossRefGoogle Scholar
  49. Rotheray GE, Gilbert F (1999) Phylogeny of Palaearctic Syrphidae (Diptera): evidence from larval stages. Zool J Linnean Soc 127:1–112CrossRefGoogle Scholar
  50. Rotheray GE, Gilbert F (2008) Phylogenetic relationships and the larval head of the lower Cyclorrhapha (Diptera). Zool J Linnean Soc 153:287–323CrossRefGoogle Scholar
  51. Rotheray GE, Hewitt S (2015) Development site, feeding mode and early stages of Palloptera scutellata (Macquart) (Diptera, Pallopteridae). Dipt Digest 22:157–170Google Scholar
  52. Rotheray GE, Horsfield D (2013) Development sites and early stages of eleven species of Clusiidae (Diptera) occurring in Europe. Zootaxa 3619:401–427CrossRefGoogle Scholar
  53. Rotheray GE, Lyszkowski R (2015) Diverse mechanisms of feeding and movement in Cyclorrhaphan larvae (Diptera). J Nat Hist 49:2139–2211CrossRefGoogle Scholar
  54. Rotheray GE, Wilkinson G (2015) Trophic structure and function in the larva of predatory muscid flies (Diptera, Muscidae). Zoomorphology 134:553–563CrossRefGoogle Scholar
  55. Rotheray GE, Zumbado M, Hancock EG, Thompson FC (2000) Remarkable aquatic predators in the genus Ocyptamus (Diptera, Syrphidae). Studia Dipterol 7:385–398Google Scholar
  56. Rotheray GE, Chandler PJ, Gilbert F (2004) Final stage larvae and puparia of Platypezidae (Diptera). Insect Syst Evol 35:79–105CrossRefGoogle Scholar
  57. Rotheray GE, Hancock EG, Marcos-Garcia M (2007) Neotropical Copestylum (Diptera, Syrphidae) breeding in bromeliads (Bromeliaceae) including 22 new species. Zool J Linnean Soc 150:267–317CrossRefGoogle Scholar
  58. Rupp L (1989) Die mitteleuropäische Arten der Gattung Volucella (Diptera, Syrphidae) als Kommensalen und Parasitoide in den Nestern von Hummeln und sozialen Wespen: Untersuchungen zur Wirtsfindung, Larvalbiologie und Mimikry. Unpublished PhD Thesis, Albert Ludwigs Universität, Freiburg, GermanyGoogle Scholar
  59. Sawin EP, Harris LR, Campos AR, Sokolowski MB (1994) Sensorimotor transformation from light reception to phototactic behavior in Drosophila larvae (Diptera: Drosophilidae). J Insect Behav 7:553–567CrossRefGoogle Scholar
  60. Schneeberg K, Beutel RG (2014) The evolution of head structures in lower Diptera. Sci Open Res.  https://doi.org/10.14293/S2199-1006.1.SOR-LIFE.ALTCE1.v2
  61. Schneider F (1968) Luftschhlucken ein wirksamer Schutz vor dem Ertrinkungstod bei Larven von Epistrophe balteata (Syrphidae Dipt). Mitt Schweiz Entomol Gesell 40:253–256Google Scholar
  62. Sherrington C (1906) The integrative action of the nervous system. Yale University Press, New HavenGoogle Scholar
  63. Simon MA, Woods WA Jr, Serebrenik YV, Simon SM, van Griethuijsen LI, Socha JJ, Lee WK, Trimmer BA (2010) Visceral-locomotory pistoning in crawling caterpillars. Curr Biol 20:1458 –1463CrossRefGoogle Scholar
  64. Sinclair BJ (1992) A phylogeneric interpretation of the Brachycera (Diptera) based on the larval mandible and associated mouthpart structures. Syst Entomol 17:233–252CrossRefGoogle Scholar
  65. Smart J (1937) On the larva and pupa of Drosophila gibbinsi Aub. Trans R Ent Soc Lond (B) 6:170–172Google Scholar
  66. Strong DR, Lawton JH, Southwood R (1984) Insects on plants. Community patterns and mechanisms. Blackwell, OxfordGoogle Scholar
  67. Swammerdam J (1758) The book of nature; or, the history of insects (translated by T. Floyd in 1758). London, 153pGoogle Scholar
  68. Tanaka Y, Ito K, Nakagaki T, Kobayash R (2012) Mechanics of peristaltic locomotion and role of anchoring. J R Soc Interface 9:222–233CrossRefGoogle Scholar
  69. Teskey HJ (1981) Morphology and terminology – larvae. In: McAlpine J, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual Nearctic Diptera, vol 1, pp 65–88Google Scholar
  70. Tracey WD, Wilson RI, Laurent G, Benzer S (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273CrossRefGoogle Scholar
  71. Wang JW, Sylwester AW, Reed D, Wu DA, Soll DR, Wu CF (1997) Morphometric description of the wandering behavior in Drosophila larvae: aberrant locomotion in Na+ and K+ channel mutants revealed by computer-assisted motion analysis. J Neurogenet 11:231–254CrossRefGoogle Scholar
  72. Weise H (1938) Die atmung den larven und puppen der schwebfliegen aus der verwandtschaft der Eristalinae unter berücksichtigung ihrer metamorphose. Z Wiss Zool 151:467–514Google Scholar
  73. Wells M (1968) Lower animals. George Weidenfeld and Nicolson, LondonGoogle Scholar
  74. Wiley EP, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics, 2nd edn. Wiley and Blackwell, New YorkCrossRefGoogle Scholar
  75. Wilkinson G, Rotheray GE (2017) Melanostoma scalare (Meigen) larvae (Diptera, Syrphidae) feed on Diptera larvae in leaf litter. Dipt Digest 24:53–60Google Scholar
  76. Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–928CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Graham E. Rotheray
    • 1
  1. 1.National Museums of ScotlandEdinburghUK

Personalised recommendations