The Expressed Portion of the Barley Genome

  • Craig G. Simpson
  • Roberto A. Barrero
  • Micha Bayer
  • Andrew Flavell
  • Paulo Rapazote-Flores
  • Matthew I. Bellgard
  • Pete E. Hedley
  • Runxuan Zhang
  • Robbie WaughEmail author
Part of the Compendium of Plant Genomes book series (CPG)


In this chapter, we refer to the expressed portion of the barley genome as the relatively small fraction of the total cellular DNA that either contains the genes that ultimately produce proteins, or that directly/indirectly controls the level, location and/or timing of when these genes are expressed and proteins are produced. We start by describing the dynamics of tissue and time-dependent gene expression and how common patterns across multiple samples can provide clues about gene networks involved in common biological processes. We then describe some of the complexities of how a single mRNA template can be differentially processed by alternative splicing to generate multiple different proteins or provide a mechanism to regulate the amount of functional gene product in a cell at a given point in time. We extend our analysis, using a number of biological examples, to address how diverse families of small non-coding microRNAs specifically regulate gene expression, and complete our appraisal by looking at the physical/molecular environment around genes that can result in either the promotion or repression of gene expression. We conclude by assessing some of the issues that remain around our ability to fully exploit the depth and power of current approaches for analysing gene expression and propose improvements that could be made using new but available sequencing and bioinformatics technologies.


  1. Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M, Han N (2017a) miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol 58:426–439PubMedGoogle Scholar
  2. Bai B, Shi B, Hou N, Cao Y, Meng Y, Bian H, Zhu M, Han N (2017b) miRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol 17(1):150Google Scholar
  3. Baker K, Dhillon T, Colas I, Cook N, Milne I, Cardle L, Bayer M, Flavell AJ (2015) Chromatin state analysis of the barley epigenome reveals a higher order structure defined by H3K27me1 and H3K27me3 abundance. Plant J. 84:111–124CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baker K, Bayer M, Cook N, Dreißig S, Dhillon T, Russell J, Hedley PE, Morris J, Ramsay L, Colas I, Waugh R, Steffenson B, Milne I, Stephen G, Marshall D, Flavell AJ(2014) The low-recombining pericentromeric region of barley restricts gene diversity and evolution but not gene expression. Plant J 79 (6):981–992Google Scholar
  5. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412CrossRefPubMedGoogle Scholar
  6. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Bio 16:727–741CrossRefGoogle Scholar
  7. Bull H, Casao MC, Zwirek M, Flavell AJ, Thomas WTB, Guo W, Zhang R, Rapazote-Flores P, Kyriakidis S, Russell J, Druka A, McKim SM, Waugh R(2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nat Commun 8 (1)Google Scholar
  8. Busch A, Hertel KJ (2012) Extensive regulation of NAGNAG alternative splicing: new tricks for the spliceosome? Genome Biol 13:143CrossRefPubMedPubMedCentralGoogle Scholar
  9. Calixto CP, Simpson CG, Waugh R, Brown JWS (2016) Alternative splicing of barley clock genes in response to low temperature. PLoS ONE 11:e0168028CrossRefPubMedPubMedCentralGoogle Scholar
  10. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134:960–968Google Scholar
  11. Colaiacovo M, Subacchi A, Bagnaresi P, Lamontanara A, Cattivelli L, Faccioli P (2010) A computational-based update on microRNAs and their targets in barley (Hordeum vulgare L.). BMC Genomics 11.
  12. Curaba J, Spriggs A, Taylor J, Li Z, Helliwell C (2012) miRNA regulation in the early development of barley seed. BMC Plant Biol 12.
  13. Dass SS, Karmakar P, Nandi AK, Sanan-Minshra N (2015) Small RNA mediated regulation of seed germination. Front Plant Sci 6:828Google Scholar
  14. Deng PC, Wang L, Cui LC, Feng KW, Liu FY, Du XH, Tong W, Nie XJ, Ji WQ, Weining S (2015) Global identification of microRNAs and their targets in barley under salinity stress. Plos One 10.
  15. Dorn ES, Cook JG (2011) Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 6:552–559CrossRefPubMedPubMedCentralGoogle Scholar
  16. Efroni I, Birnbaum KD (2016) The potential of single-cell profiling in plants. Genome Biol 17:65. Scholar
  17. Fard EM, Bakhshi B, Keshavarznia R, Nikpay N, Shahbazi M, Salekdeh GH (2017) Drought responsive microRNAs in two barley cultivars differing in their level of sensitivity to drought stress. Plant Physiol Biochem 118:121–129CrossRefPubMedGoogle Scholar
  18. Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, Newcomb JM, Sempere LF, Flatmark K, Hovig E et al (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gadjieva R, Axelsson E, Olsson U, Vallon-Christersson J, Hansson M (2004) Nonsense-mediated mRNA decay in barley mutants allows the cloning of mutated genes by a microarray approach. Plant Physiol Biochem 42:681–685CrossRefPubMedGoogle Scholar
  20. Giacomello S, Salmén F, Terebieniec BK, Vickovic S, Navarro JF, Alexeyenko A, Reimegård J, McKee LS, Mannapperuma C, Bulone V, Ståhl PL, Sundström JF, Street NR, Lundeberg J (2017) Spatially resolved transcriptome profiling in model plant species. Nat Plants 3:17061CrossRefPubMedGoogle Scholar
  21. Gloggnitzer J, Akimcheva S, Srinivasan A, Kusenda B, Riehs N, Stampfl H, Bautor J, Dekrout B, Jonak C, Jiménez-Gómez JM, Parker JE, Riha K (2014) Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense. Cell Host Microbe 16:376–390CrossRefPubMedGoogle Scholar
  22. Guo L, Liu C-M (2016) A single-nucleotide exon found in Arabidopsis. Sci Rep 5 (1)Google Scholar
  23. Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015) Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnol J 13:2–13CrossRefPubMedGoogle Scholar
  24. Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P (2013) A comprehensive expression profile of MicroRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 20:109–125CrossRefPubMedGoogle Scholar
  25. Halterman DA, Wei F, Wise RP (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131:558–567CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hove RM, Ziemann M, Bhave M (2015) Identification and expression analysis of the barley (Hordeum vulgare L.) aquaporin gene family. PLoS ONE 10:e0128025CrossRefPubMedPubMedCentralGoogle Scholar
  27. International Barley Genome Sequencing Consortium (IBGSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  28. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080CrossRefGoogle Scholar
  29. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53CrossRefGoogle Scholar
  30. Kalyna M, Simpson CG, Syed NH, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh HQ, Barta A, Brown JWS (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469CrossRefPubMedGoogle Scholar
  31. Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomic 10:493–507CrossRefGoogle Scholar
  32. Karam R, Wengrod J, Gardner LB, Wilkinson MF (2013) Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim Biophys Acta 1829:624–633CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koroban NV, Kudryavtseva AV, Krasnov GS, Sadritdinova AF, Fedorova MS, Snezhkina AV, Bolsheva NL, Muravenko OV, Dmitriev AA, Melnikova NV (2016) The role of microRNA in abiotic stress response in plants. Mol Biol 50:337–343CrossRefGoogle Scholar
  34. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence miRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedGoogle Scholar
  35. Li S, Castillo-González C, Yu B, Zhang X (2017) The functions of plant small RNAs in development and in stress responses. Plant J 90:654–670CrossRefPubMedGoogle Scholar
  36. Li X, Shin S, Heinen S, Dill-Macky R, Berthiller F, Nersesian N, Clemente T, McCormick S, Muehlbauer GJ (2015) Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol Plant Microbe Interact 28:1237–1246CrossRefPubMedGoogle Scholar
  37. Locascio A, Roig-Villanova I, Bernardi J, Varotto S (2014) Current perspectives on the hormonal control of seed development in Arabidopsis and maize: a focus on auxin. Front Plant Sci 5:412CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lv SZ, Nie XJ, Wang L, Du XH, Biradar SS, Jia XO, Weining S (2012) Identification and characterization of microRNAs from barley (Hordeum vulgare L.) by high-throughput sequencing. Int J Mol Sci 13:2973–2984CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marquez Y, Brown JWS, Simpson CG, Barta A, Kalyna M (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res 22:1184–1195CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433CrossRefPubMedGoogle Scholar
  41. Matsumoto T, Tanaka T, Sakai H, Amano N, Kanamori H, Kurita K, Kikuta A, Kamiya K, Yamamoto M, Ikawa H, Fujii N, Hori K, Itoh T, Sato K (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156:20–28CrossRefPubMedPubMedCentralGoogle Scholar
  42. McKibbin RS, Wilkinson MD, Bailey PC, Flintham JE, Andrew LM, Lazzeri PA, Gale MD, Lenton JR, Holdsworth MJ (2002) Transcripts of Vp-1 homeologues are misspliced in modern wheat and ancestral species. Proc Natl Acad Sci USA 99:10203–10208CrossRefPubMedGoogle Scholar
  43. Meng F, Liu H, Wang K, Liu L, Wang S, Zhao Y, Yin J, Li Y (2013) Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol 13:140CrossRefPubMedPubMedCentralGoogle Scholar
  44. Min XJ, Powell B, Braessler J, Meinken J, Yu F, Sablok G (2015) Genome-wide cataloging and analysis of alternatively spliced genes in cereal crops. BMC Genomics 16(1):721Google Scholar
  45. Mochida K, Uehara-Yamaguchi Y, Yoshida T, Sakurai T, Shinozaki K (2011) Global landscape of a co-expressed gene network in barley and its application to gene discovery in Triticeae crops. Plant Cell Physiol 52:785–803CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709CrossRefPubMedGoogle Scholar
  47. Ozhuner E, Eldem V, Ipek A, Okay S, Sakcali S, Zhang BH, Boke H, Unver T (2013) Boron stress responsive microRNAs and their targets in barley. Plos One 8.
  48. Panahi B, Mohammadi SA, Ebrahimi Khaksefidi R, Fallah Mehrabadi J, Ebrahimie E (2015) Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis. FEBS Lett 589:3564–3575CrossRefPubMedGoogle Scholar
  49. Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E (2015) Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 16:29CrossRefPubMedPubMedCentralGoogle Scholar
  50. Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294CrossRefPubMedGoogle Scholar
  51. Reddy AS, Marquez Y, Kalyna M, Barta A (2013) Complexity of the alternative splicing landscape in plants. Plant Cell 25:3657–3683CrossRefPubMedPubMedCentralGoogle Scholar
  52. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants (vol 16, pg 1616, 2002). Gene Dev 16:2313CrossRefGoogle Scholar
  53. Rodríguez-Suárez C, Atienza SG, Pistón F (2011) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS ONE 6:e19885CrossRefPubMedPubMedCentralGoogle Scholar
  54. Roudier F, Ahmed I, Bérard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schmitz J, Franzen R, Ngyuen TH, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (2000) Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42:899–913CrossRefPubMedGoogle Scholar
  56. Schreiber AW, Shi BJ, Huang CY, Langridge P, Baumann U (2011) Discovery of barley miRNAs through deep sequencing of short reads. BMC Genomics 12.
  57. Shahzad K, Rauf M, Ahmed M, Malik ZA, Habib I, Ahmed Z, Mahmood K, Ali R, Masmoudi K, Lemtiri-Chlieh F, Gehring C, Berkowitz GA, Saeed NA (2015) Functional characterisation of an intron retaining K(+) transporter of barley reveals intron-mediated alternate splicing. Plant Biol (Stuttg) 17:840–851CrossRefGoogle Scholar
  58. Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA (2005) BarleyBase—an expression profiling database for plant genomics. Nucleic Acids Res 1:33Google Scholar
  59. Shi Y, Sha G, Sun X (2014) Genome-wide study of NAGNAG alternative splicing in Arabidopsis. Planta 239:127–138CrossRefPubMedGoogle Scholar
  60. Silva AT, Ribone PA, Chan RL, Ligterink W, Hilhorst HW (2016) A predictive coexpression network identifies novel genes controlling the seed-to-seedling phase transition in arabidopsis thaliana. Plant Physiol 170:2218–2231CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sreenivasulu N, Usadel B, Winter A, Radchuk V, Scholz U, Stein N, Weschke W, Strickert M, Close TJ, Stitt M et al (2008) Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools. Plant Physiol 146:1738–1758CrossRefPubMedPubMedCentralGoogle Scholar
  62. Staiger D, Brown JWS (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25:3640–3656CrossRefPubMedPubMedCentralGoogle Scholar
  63. Thorbjørnsen T, Villand P, Kleczkowski LA, Olsen OA (1996) A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochem J 313:149–154CrossRefPubMedPubMedCentralGoogle Scholar
  64. van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A, von Korff M, (2017) Six-Rowed Spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174 (4):2397–2408Google Scholar
  65. Walters B, Lum G, Sablok G, Min XJ (2013) Genome-wide landscape of alternative splicing events in Brachypodium distachyon. DNA Res 20:163–171Google Scholar
  66. Wu XM, Hornyik C, Bayer M, Marshall D, Waugh R, Zhang RX (2014) In silico identification and characterization of conserved plant microRNAs in barley. Cent Eur J Biol 9:841–852Google Scholar
  67. Xu W, Meng Y, Wise RP (2014) Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol 201:1396–1412CrossRefPubMedGoogle Scholar
  68. Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339CrossRefPubMedGoogle Scholar
  69. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615CrossRefPubMedGoogle Scholar
  70. Zhang Q, Zhang X, Pettolino F, Zhou G, Li C (2016a) Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos. J Plant Physiol 191:127–139CrossRefPubMedGoogle Scholar
  71. Zhang Q, Zhang X, Wang S, Tan C, Zhou G, Li C (2016b) Involvement of alternative splicing in barley seed germination. PLoS ONE 11:e0152824CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang R, Tucker MR, Burton RA, Shirley NJ, Little A, Morris J, Milne L, Houston K, Hedley PE, Waugh R, Fincher GB (2016c) The dynamics of transcript abundance during cellularization of developing barley endosperm. Plant Physiol 170:1549–1565PubMedPubMedCentralGoogle Scholar
  73. Zhiguo E, Wang L, Zhou J (2013) Splicing and alternative splicing in rice and humans. BMB Rep 46:439–447CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Craig G. Simpson
    • 1
  • Roberto A. Barrero
    • 2
  • Micha Bayer
    • 1
  • Andrew Flavell
    • 3
  • Paulo Rapazote-Flores
    • 1
  • Matthew I. Bellgard
    • 2
  • Pete E. Hedley
    • 1
  • Runxuan Zhang
    • 1
  • Robbie Waugh
    • 1
    • 3
    Email author
  1. 1.James Hutton InstituteDundeeUK
  2. 2.Murdoch UniversityPerthAustralia
  3. 3.Division of Plant SciencesUniversity of DundeeDundeeUK

Personalised recommendations