The Genomes of the Secondary and Tertiary Gene Pools of Barley

  • Neele WendlerEmail author
Part of the Compendium of Plant Genomes book series (CPG)


In plant breeding, crop wild relatives are usually a valuable genetic resource for crop improvement. Thereby, wild relatives of a plant are divided into three different gene pools, depending on how difficult it is to produce hybrids between a species and the crop itself. In barley (Hordeum vulgare spp. L), the primary gene pool consists of barley itself, landraces and H. spontaneum. These germplasms are easy to utilize and were frequently used for barley improvement. By contrast, species of the secondary and tertiary gene pool are much more difficult to access and have thus not yet been reported to be utilized for barley breeding. H. bulbosum is the only member within the secondary gene pool. A relatively large set of hybrids, substitution and introgression lines between barley and H. bulbosum have been produced and characterized on a physiological and molecular level. Recently, the latest molecular tools such as genotyping-by-sequencing and Exome Capture have been utilized to unlock these genetic resources. While about 31 highly diverse species belong to the tertiary gene pool, not much success has been reported so far to access them.


  1. Aliyeva-Schnorr L, Stein N, Houben A (2016) Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosome Research:1–12.
  2. Brinkman MA, Frey KJ (1977) Yield component analysis of oat isolines that produce different grain yields. Crop Sci 17:165–168CrossRefGoogle Scholar
  3. Fedak G, Armstrong KC (1981) Cytogenetics of the Trigeneric Hybrid, (Hordeum vulgare X Triticum aestivum) X Secale cereale. Theor Appl Genet 60 (4):215–219.
  4. Fetch T, Johnston PA, Pickering R (2009) Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (H. vulgare). Phytopathology 99(4):339–343.
  5. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517CrossRefGoogle Scholar
  6. International Barley Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716.
  7. Jaffe B, Caligari PDS, Snape JW (2000) A skeletal linkage map of Hordeum bulbosum L. and comparative mapping with barley (H. vulgare L.). Euphytica 115(2):115–120.
  8. Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference. Molecular Biology and Evolution 23(8):1602–1612.
  9. Johnston PA (2007) Molecular characterisation of chromatin introgressed from Hordeum bulbosum L. into Hordeum vulgare L., University of Otago, Dunedin, New ZealandGoogle Scholar
  10. Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R (2013) Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor Appl Genet 126(6):1613–1625.
  11. Johnston PA, Pickering RA (2002) PCR detection of Hordeum bulbosum introgressions in an H. vulgare background using a retrotransposon-like sequence. Theor Appl Genet 104(4):720–726.
  12. Johnston PA, Timmerman-Vaughan GM, Farnden KJF, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118(8):1429–1437.
  13. Kao KN, Constabe F, Michaylu MR, Gamborg OL (1974) Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120(3):215–227.
  14. Kasha KJ, Kao KN, Reinberg E (1970) Genetic control over chromosome stability in hybrids from interspecific Hordeum Crosses. Genetics 64(2):263–275Google Scholar
  15. Kasha KJ, Sadasiva R (1971) Genome relationship between Hordeum vulgare L. and H. bulbosum L. Chromosoma 35(3):264–287.
  16. Kim NS, Fedak G, Han F, Cao W (2008) Cytogenetic analyses of intergeneric hybrids between barley and nine species of Elymus. Genome 51(11):897–904.
  17. Kisaka H, Kameya T (1998) Cold and salt tolerance of somatic hybrid calli between barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Breed Sci 48(1):11–15Google Scholar
  18. Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oryza sativa L) and barley (Hordeum vulgare L) by protoplast fusion. Plant Cell Rep 17(5):362–367CrossRefGoogle Scholar
  19. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, and Marra MA (2009) Circos: An information aesthetic for comparative genomics. Genome Res 19:1639–1645Google Scholar
  20. Lachance J, Tishkoff SA (2013) SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays: news and reviews in molecular, cellular and developmental biology 35(9).
  21. Lukaszewski AJ, Lapinski B, Rybka K (2005) Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res 109(1–3):373–377.
  22. Lundqvist A (1962) Self-incompatibility in diploid Hordeum bulbosum L. Hereditas 48(1–2):138–152. Scholar
  23. Mascher et al. (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433.
  24. Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriain M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76(4):718–727.
  25. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505.
  26. Pickering R (2000) Do the wild relatives of cultivated barley have a place in barley improvement? Barley genetics VIII: proceedings of the 8th international barley genetics symposium. Barley Genetics Conference, Adelaide, AustraliaGoogle Scholar
  27. Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genome Res 109(1–3):344–349.
  28. Pickering R, Niks RE, Johnston PA, Butler RC (2004) Importance of the secondary genepool in barley genetics and breeding II. Disease resistance, agronomic performance and quality. Czech J Genet Plant Breed 40(3):79–85CrossRefGoogle Scholar
  29. Pickering RA (1984) The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare L. X Hordeum bulbosum L. Plant Sci Lett 34(1–2):153–164.
  30. Pickering RA (1991a) Comparison of crossover frequencies in barley (Hordeum vulgare) and H. vulgare x H. bulbosum hybrids using a paracentric inversion. Genome Biol 34:666–673CrossRefGoogle Scholar
  31. Pickering RA (1991b) The production of fertile triploid hybrids from crosses between Hordeum vulgare L. (2n = 4× = 28) and H. bulbosum L. (2n = 2× = 14). Hereditas 114:227–236CrossRefGoogle Scholar
  32. Pickering RA, Devaux P (1992) Haploid production: approaches and use in plant breeding. Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, Wallingford, UKGoogle Scholar
  33. Pickering RA, Hill AM, Michel M, Timmerman-Vaughan GM (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2L). Theor Appl Genet 91(8):1288–1292CrossRefPubMedGoogle Scholar
  34. Pickering RA, Rennie WF, Cromey MG (1987) Disease resistant material available from the wide hybridization programme at DSIR. Barley Newsletter 31:248–250Google Scholar
  35. Pickering RA, Timmerman GM, Cromey MG, Melz G (1994) Characterization of progeny from backcrosses of triploid hybrids between Hordeum vulgare L (2x) and H. bulbosum L. (4x) to Hordeum vulgare. Theor Appl Genet 88(3–4):460–464PubMedGoogle Scholar
  36. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. Plos One 7(2):e32253.
  37. Ruge-Wehling B, Linz A, Habekuss A, Wehling P (2006) Mapping of Rym16(Hb), the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113(5):867–873.
  38. Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2003) Mapping of Rym14 (Hb), a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107(6):965–971.
  39. Salvo-Garrido H, Laurie DA, Jaffé B, Snape JW (2001) An RFLP map of diploid Hordeum bulbosum L. and comparison with maps of barley (H. vulgare L.) and wheat (Triticum aestivum L.). Theor Appl Genet 103(6–7):869–880.
  40. Scholz M, Ruge-Wehling B, Habekuss A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4 (Hb): a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor Appl Genet 119(5):837–849.
  41. Shtaya MJY, Sillero JC, Flath K, Pickering R, Rubiales D (2007) The resistance to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.) derived from H. vulgare x H. bulbosum crosses. Plant Breeding 126(3):259–267.
  42. Singh AK, Rossnagel BG, Scoles GJ, Pickering RA (2004) Identification of a quantitatively inherited source of Hordeum bulbosum derived scald resistance from barley line 926K2/11/1/5/1. Can J Plant Sci 84(3):935–938CrossRefGoogle Scholar
  43. Somers DA, Narayanan KR, Kleinhofs A, Cooperbland S, Cocking EC (1986) Immunological evidence for transfer of the barley nitrate reductase structural gene to nicotiana-tabacum by protoplast fusion. Mol General Genet 204(2):296–301.
  44. Stam P, Zeven AC (1981) The theoretical proportion of the donor genome in near-isogenic lines of self-fertilizers bred by backcrossing. Euphytica 30:227–238CrossRefGoogle Scholar
  45. Szigat G, Pohler W (1982) Hordeum bulbosum x H. vulgare hybrids and their backcrosses with cultivated barley. Cereal Res Commun 10:73–78Google Scholar
  46. Szigat G, Szigat G (1991) Amphidiploid hybrids between Hordeum vulgare and H. bulbosum—basis for the development of new initial material for winter barley breeding. In: Winkel A (ed) Vortr Pflanzenzüchtg. EUCARPIA, Wageningen, Netherlands, pp 34–39Google Scholar
  47. Thomas HM, Pickering RA (1985) The influence of parental genotype on the chromosome behaviour of Hordeum vulgare × H. bulbosum diploid hybrids. Theor Appl Genet 71:437–442PubMedGoogle Scholar
  48. Toubia-Rahme H, Johnston PA, Pickering RA, Steffenson BJ (2003) Inheritance and chromosomal location of Septoria passerinii resistance introgressed from Hordeum bulbosum into Hordeum vulgare. Plant Breeding 122(5):405–409.
  49. von Bothmer R, Flink J, Jacoben N, Kotimäki M, Landström T (1983) Interspecific hybridization with cultivated barley (Hordeum vulgare L.). Hereditas 99:219–244CrossRefGoogle Scholar
  50. von Bothmer R, Jacobsen N (1986) Interspecific crosses in Hordeum (Poaceae). Plant Syst Evol 153(1/2):49–64CrossRefGoogle Scholar
  51. von Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum. Systematic and ecogeographic studies on crop genepools, 2nd edn. International Plant Genetic Resources Institute, Rome, ItalyGoogle Scholar
  52. Walther U, Rapke H, Proeseler G, Szigat G (2000) Hordeum bulbosum—a new source of disease resistance—transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breeding 119(3):215–218.
  53. Wendler N (2016) Unlocking the secondary gene pool of barley for breeding and research. Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)Google Scholar
  54. Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant 128:1137–1149Google Scholar
  55. Wendler N, Mascher M, Nöh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12(8):1122–1131.
  56. Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (Hordeum vulgare). Theor Appl Genet 84(7–8):771–777PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.KWS LOCHOW GMBH, KWS Cereals BiotechnologyEinbeckGermany

Personalised recommendations