Advertisement

A Genomic View of Biotic Stress Resistance

  • J. Mitch Elmore
  • Dragan Perovic
  • Frank Ordon
  • Patrick Schweizer
  • Roger P. Wise
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Over the last 100 years, research in barley disease resistance has progressed from classical genetic approaches up to molecular genetics and genome-wide functional profiling. Along the way, a multitude of well-characterized genetic resources have paved the way for mechanistic investigations into barley immunity. Seminal discoveries in barley have been translated to other crops, thus proving it to be an excellent system for plant disease research. Recent access to high-quality barley and pathogen genomes has empowered large-scale functional studies and facilitated the development of new technologies to associate traits with genes. Continued integration of existing germplasm with anchored sequence data promises to expedite mapping and functional characterization of important disease traits. In this chapter, we offer a genomic view of barley biotic stress with a focus on different types of resistance, current genomic approaches to dissect immune responses, and future prospects for the field.

Notes

Acknowledgements

Research supported in part by the National Science Foundation—Plant Genome Research Program grants 13-39348 and USDA-Agricultural Research Service project 3625-21000-060-00D to RPW, by the German Ministry of Education and Research (grants GABI-nonhost; GABI-phenome) and by German DFG (grants ERA-PG TritNONHOST; ERA-CAPS DURESTrit) to PS, and by the Federal Ministry of Education and Research (0314000D, 0315708B, 031A323B) to FO. JME is supported by a USDA-ARS Postdoctoral Research Associateship and NIFA-AFRI Postdoctoral Fellowship 2017-67012-26086. DP is supported by the Federal Ministry of Food and Agriculture (FKZ 2814601913). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Mention of trade names or commercial products in this publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture or the National Science Foundation. USDA is an equal opportunity provider and employer.

References

  1. Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204(2):273–281.  https://doi.org/10.1111/nph.12889CrossRefPubMedGoogle Scholar
  2. Acevedo-Garcia J, Spencer D, Thieron H, Reinstädler A, Hammond-Kosack K, Phillips AL, Panstruga R (2016) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12631CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aghnoum R, Niks RE (2010) Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley. New Phytol 185(1):275–284.  https://doi.org/10.1111/j.1469-8137.2009.03039.xCrossRefPubMedGoogle Scholar
  4. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9(9):1086–1099.  https://doi.org/10.1111/j.1467-7652.2011.00628.xCrossRefPubMedGoogle Scholar
  5. Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14.  https://doi.org/10.1186/1471-2229-14-120
  6. Arora D, Gross T, Brueggeman R (2013) Allele characterization of genes required for rpg4-mediated wheat stem rust resistance identifies Rpg5 as the R Gene. Phytopathology 103(11):1153–1161.  https://doi.org/10.1094/PHYTO-01-13-0030-RCrossRefPubMedGoogle Scholar
  7. Atienza SG, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220(1):71–79.  https://doi.org/10.1007/s00425-004-1319-1CrossRefPubMedGoogle Scholar
  8. Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, Zhang JF, Fung P, Gong YC, Wang PW, McCourt P, Guttman DS (2011) Next-generation mapping of Arabidopsis genes. Plant J 67(4):715–725.  https://doi.org/10.1111/j.1365-313X.2011.04619.xCrossRefPubMedGoogle Scholar
  9. Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen Q-H (2012) Structure-function analysis of barley NLR immune receptor MLA10 reveals Its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8(6):e1002752.  https://doi.org/10.1371/journal.ppat.1002752CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beier S, Himmelbach A, Schmutzer T, Felder M, Taudien S, Mayer KFX, Platzer M, Stein N, Scholz U, Mascher M (2016) Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes. Plant Biotechnol J 14(7):1511–1522.  https://doi.org/10.1111/pbi.12511CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bieri S, Mauch S, Shen Q-H, Peart J, Devoto A, Casais C, Ceron F, Schulze S, Steinbiß H-H, Shirasu K, Schulze-Lefert P (2004) RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16(12):3480–3495CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boyd LA, Smith PH, Foster EM, Brown JKM (1995) The effects of allelic variation at the Mla resistance locus in barley on the early development of Erysiphe graminis f.sp. hordei and host responses. Plant J 7(6):959–968.  https://doi.org/10.1046/j.1365-313X.1995.07060959.xCrossRefGoogle Scholar
  13. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci 99(14):9328–9333CrossRefPubMedGoogle Scholar
  14. Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci 105(39):14970–14975CrossRefPubMedGoogle Scholar
  15. Budhagatapalli N, Rutten T, Gurushidze M, Kumlehn J, Hensel G (2015) Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G3: Genes|Genomes|Genet 5(9):1857Google Scholar
  16. Bulgarelli D, Collins NC, Tacconi G, Dellaglio E, Brueggeman R, Kleinhofs A, Stanca AM, Valè G (2004) High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theor Appl Genet 108(7):1401–1408.  https://doi.org/10.1007/s00122-003-1557-9CrossRefPubMedGoogle Scholar
  17. Bulgarelli D, Biselli C, Collins NC, Consonni G, Stanca AM, Schulze-Lefert P, Valè G (2010) The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS ONE 5(9):e12599.  https://doi.org/10.1371/journal.pone.0012599CrossRefPubMedPubMedCentralGoogle Scholar
  18. Caldo RA, Nettleton D, Wise RP (2004) Interaction-dependent gene expression in Mla-specified response to barley powdery mildew. Plant Cell 16(9):2514–2528CrossRefPubMedPubMedCentralGoogle Scholar
  19. Caldo RA, Nettleton D, Peng J, Wise RP (2006) Stage-specific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles. Mol Plant Microbe Interact 19(9):939–947.  https://doi.org/10.1094/MPMI-19-0939CrossRefPubMedGoogle Scholar
  20. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds P (2014) A novel conserved mechanism for plant NLR protein pairs: the ‘integrated decoy’ hypothesis. Front Plant Sci 5:606CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC–NLR proteins. Proc Natl Acad Sci 113(36):10204–10209CrossRefPubMedGoogle Scholar
  22. Chang C, Yu D, Jiao J, Jing S, Schulze-Lefert P, Shen Q-H (2013) Barley MLA immune receptors directly interfere with antagonistically acting transcription factors to initiate disease resistance signaling. Plant Cell 25(3):1158–1173CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chełkowski J, Tyrka M, Sobkiewicz A (2003) Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 44(3):291–309PubMedGoogle Scholar
  24. Chen M, Kendziorski C (2007) A statistical framework for expression quantitative trait loci mapping. Genetics 177(2):761CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I, Morris J, Ramsay L, Marshall D, Cardle L, Waugh R (2010) An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS ONE 5(1):e8598.  https://doi.org/10.1371/journal.pone.0008598CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chowdhury J, Henderson M, Schweizer P, Burton RA, Fincher GB, Little A (2014) Differential accumulation of callose, arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp hordei. New Phytol 204(3):650–660.  https://doi.org/10.1111/nph.12974CrossRefPubMedGoogle Scholar
  27. Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise RP (2004) A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiol 134(3):960–968CrossRefPubMedPubMedCentralGoogle Scholar
  28. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szűcs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10(1):582.  https://doi.org/10.1186/1471-2164-10-582CrossRefGoogle Scholar
  29. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J-L, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425(6961):973–977. http://www.nature.com/nature/journal/v425/n6961/suppinfo/nature02076_S1.html
  30. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392.  https://doi.org/10.1038/ng.2447CrossRefPubMedGoogle Scholar
  31. Cook DE, Mesarich CH, Thomma BPHJ (2015) Understanding plant immunity as a surveillance system to detect invasion. Annu Rev Phytopathol 53(1):541–563.  https://doi.org/10.1146/annurev-phyto-080614-120114CrossRefPubMedGoogle Scholar
  32. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66(1):487–511.  https://doi.org/10.1146/annurev-arplant-050213-040012CrossRefPubMedGoogle Scholar
  33. Deslandes L, Rivas S (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci 17(11):644–655.  https://doi.org/10.1016/j.tplants.2012.06.011CrossRefPubMedGoogle Scholar
  34. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11(8):539–548CrossRefPubMedGoogle Scholar
  35. Doehlemann G, Requena N, Schaefer P, Brunner F, O’Connell R, Parker JE (2014) Reprogramming of plant cells by filamentous plant-colonizing microbes. New Phytol 204(4):803–814.  https://doi.org/10.1111/nph.12938CrossRefPubMedGoogle Scholar
  36. Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Mol Plant Microbe Interact 18(8):755–761CrossRefPubMedGoogle Scholar
  37. Douchkov D, Lück S, Johrde A, Nowara D, Himmelbach A, Rajaraman J, Stein N, Sharma R, Kilian B, Schweizer P (2014) Discovery of genes affecting resistance of barley to adapted and non-adapted powdery mildew fungi. Genome Biol 15(12):518.  https://doi.org/10.1186/s13059-014-0518-8CrossRefPubMedPubMedCentralGoogle Scholar
  38. Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin MS, Beahan CT, Kopischke M, Fuchs R, Lipka V, Niks RE, Bulone V, Chowdhury J, Little A, Burton RA, Bacic A, Fincher GB, Schweizer P (2016) The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol 212(2):421–433.  https://doi.org/10.1111/nph.14065CrossRefPubMedGoogle Scholar
  39. Dracatos P, Singh D, Fetch T, Park R (2015) Resistance to Puccinia graminis f. sp. avenae in barley is associated with the Rpg5 locus. Phytopathology 105(4):490–494.  https://doi.org/10.1094/PHYTO-08-14-0224-RCrossRefPubMedGoogle Scholar
  40. Dracatos PM, Nansamba M, Berlin A, Park RF, Niks RE (2016) Isolate specificity and polygenic inheritance of resistance in barley to the heterologous rust pathogen Puccinia graminis f. sp. avenae. Phytopathology 106(9):1029–1037.  https://doi.org/10.1094/PHYTO-10-15-0264-RCrossRefPubMedGoogle Scholar
  41. Druka A, Druka I, Centeno AG, Li H, Sun Z, Thomas WTB, Bonar N, Steffenson BJ, Ullrich SE, Kleinhofs A, Wise RP, Close TJ, Potokina E, Luo Z, Wagner C, Schweizer GF, Marshall DF, Kearsey MJ, Williams RW, Waugh R (2008a) Towards systems genetic analyses in barley: integration of phenotypic, expression and genotype data into GeneNetwork. BMC Genet 9(1):73.  https://doi.org/10.1186/1471-2156-9-73CrossRefPubMedPubMedCentralGoogle Scholar
  42. Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, Marshall DF, Steffenson BJ, Close TJ, Wise RP, Kleinhofs A, Williams RW, Kearsey MJ, Waugh R (2008b) Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. Theor Appl Genet 117(2):261–272.  https://doi.org/10.1007/s00122-008-0771-xCrossRefPubMedGoogle Scholar
  43. Elliott C, Zhou FS, Spielmeyer W, Panstruga R, Schulze-Lefert P (2002) Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol Plant Microbe Interact 15(10):1069–1077CrossRefPubMedGoogle Scholar
  44. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker assisted selection in crop plants. Plant Cell Tissue Organ Cult 82(3):317–342.  https://doi.org/10.1007/s11240-005-2387-zCrossRefGoogle Scholar
  45. French E, Kim B-S, Iyer-Pascuzzi AS (2016) Mechanisms of quantitative disease resistance in plants. Semin Cell Dev Biol 56:201–208.  https://doi.org/10.1016/j.semcdb.2016.05.015CrossRefPubMedGoogle Scholar
  46. Friedt W, Ordon F (2007) Molecular markers for gene pyramiding and disease resistance breeding in barley. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, Genomics applications in crops, vol 2. Springer, Dordrecht, pp 81–101.  https://doi.org/10.1007/978-1-4020-6297-1_4
  47. Ge XT, Deng WW, Lee ZZ, Lopez-Ruiz FJ, Schweizer P, Ellwood SR (2016) Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace. Sci Rep 6:10.  https://doi.org/10.1038/srep29558CrossRefGoogle Scholar
  48. Gill U, Brueggeman R, Nirmala J, Chai Y, Steffenson B, Kleinhofs A (2016) Molecular and genetic characterization of barley mutants and genetic mapping of mutant rpr2 required for Rpg1-mediated resistance against stem rust. Theor Appl Genet 129(8):1519–1529.  https://doi.org/10.1007/s00122-016-2721-3CrossRefPubMedGoogle Scholar
  49. Graner A, Kilian A, Kleinhofs A (2010) Barley genome organization, mapping, and synteny. In: Barley. Wiley-Blackwell, pp 63–84.  https://doi.org/10.1002/9780470958636.ch3
  50. Haegi A, Bonardi V, Dall’Aglio E, Glissant D, Tumino G, Collins NC, Bulgarelli D, Infantino A, Stanca AM, Delledonne M, ValÈ G (2008) Histological and molecular analysis of Rdg2a barley resistance to leaf stripe. Mol Plant Pathol 9(4):463–478.  https://doi.org/10.1111/j.1364-3703.2008.00479.x
  51. Halterman DA, Wise RP (2004) A single-amino acid substitution in the sixth leucine-rich repeat of barley MLA6 and MLA13 alleviates dependence on RAR1 for disease resistance signaling. Plant J 38(2):215–226.  https://doi.org/10.1111/j.1365-313X.2004.02032.xCrossRefPubMedGoogle Scholar
  52. Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25(3):335–348.  https://doi.org/10.1046/j.1365-313x.2001.00982.xCrossRefPubMedGoogle Scholar
  53. Halterman DA, Wei F, Wise RP (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131(2):558–567CrossRefPubMedPubMedCentralGoogle Scholar
  54. Hisano H, Sakamoto K, Takagi H, Terauchi R, Sato K (2017) Exome QTL-seq maps monogenic locus and QTLs in barley. BMC Genom 18(1):125.  https://doi.org/10.1186/s12864-017-3511-2CrossRefGoogle Scholar
  55. Hofinger BJ, Russell JR, Bass CG, Baldwin T, Dos Reis M, Hedley PE, Li Y, Macaulay M, Waugh R, Hammond-Kosack KE, Kanyuka K (2011) An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol Ecol 20(17):3653–3668.  https://doi.org/10.1111/j.1365-294X.2011.05201.xCrossRefPubMedGoogle Scholar
  56. Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci 100(1):364–369CrossRefPubMedGoogle Scholar
  57. Hu P, Meng Y, Wise RP (2009) Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley–powdery mildew interactions. Mol Plant Microbe Interact 22(3):311–320.  https://doi.org/10.1094/MPMI-22-3-0311CrossRefPubMedGoogle Scholar
  58. Hückelhoven R (2007) Cell wall–associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45(1):101–127.  https://doi.org/10.1146/annurev.phyto.45.062806.094325CrossRefPubMedGoogle Scholar
  59. Hückelhoven R, Seidl A (2016) PAMP-triggered immune responses in barley and susceptibility to powdery mildew. Plant Signaling Behav 11(7):e1197465.  https://doi.org/10.1080/15592324.2016.1197465CrossRefGoogle Scholar
  60. Huckelhoven R, Dechert C, Kogel KH (2003) Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci 100(9):5555–5560CrossRefPubMedGoogle Scholar
  61. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39(1):285–312CrossRefPubMedGoogle Scholar
  62. IBSC, International Barley Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716. http://www.nature.com/nature/journal/v491/n7426/abs/nature11543.html#supplementary-information
  63. Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297CrossRefPubMedPubMedCentralGoogle Scholar
  64. Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant Microbe Interact 19(11):1270–1279.  https://doi.org/10.1094/MPMI-19-1270CrossRefPubMedGoogle Scholar
  65. Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178(4):2327CrossRefPubMedPubMedCentralGoogle Scholar
  66. Jansen RC, Nap J-P (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391.  https://doi.org/10.1016/S0168-9525(01)02310-1CrossRefPubMedGoogle Scholar
  67. Jin Y, Steffenson BJ, Miller JD (1994) Inheritance of resistance to pathotypes QCC and MCC of Puccinia graminis f. sp. tritici in barley line Q21861 and temperature effects on the expression of resistance. Phytopathology 84(5):452–455CrossRefGoogle Scholar
  68. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329CrossRefPubMedGoogle Scholar
  69. Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B (2011) The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J 65(4):610–621.  https://doi.org/10.1111/j.1365-313X.2010.04445.xCrossRefPubMedGoogle Scholar
  70. Jørgensen JH, Wolfe M (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13(1):97–119.  https://doi.org/10.1080/07352689409701910CrossRefGoogle Scholar
  71. Juliana P, Rutkoski JE, Poland JA, Singh RP, Murugasamy S, Natesan S, Barbier H, Sorrells ME (2015) Genome-wide association mapping for leaf tip necrosis and pseudo-black chaff in relation to durable rust resistance in wheat. Plant Genome 8(2).  https://doi.org/10.3835/plantgenome2015.01.0002
  72. Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ, Leggett RM, Bryan GJ, Cardle L, Hein I, Jones JDG (2013) Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76(3):530–544.  https://doi.org/10.1111/tpj.12307CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kai H, Takata K, Tsukazaki M, Furusho M, Baba T (2012) Molecular mapping of Rym17, a dominant and rym18 a recessive barley yellow mosaic virus (BaYMV) resistance genes derived from Hordeum vulgare L. Theor Appl Genet 124(3):577–583.  https://doi.org/10.1007/s00122-011-1730-5CrossRefPubMedGoogle Scholar
  74. Kanyuka K, Druka A, Caldwell DG, Tymon A, McCallum N, Waugh R, Adams MJ (2005) Evidence that the recessive bymovirus resistance locus rym4 in barley corresponds to the eukaryotic translation initiation factor 4E gene. Mol Plant Pathol 6(4):449–458.  https://doi.org/10.1111/j.1364-3703.2005.00294.xCrossRefPubMedGoogle Scholar
  75. Kaur N, Street K, Mackay M, Yahiaoui N, Keller B (2008) Molecular approaches for characterization and use of natural disease resistance in wheat. Eur J Plant Pathol 121(3):387–397.  https://doi.org/10.1007/s10658-007-9252-3CrossRefGoogle Scholar
  76. Kliebenstein D (2009) Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 60:93–114CrossRefPubMedGoogle Scholar
  77. Krattinger SG, Keller B (2016) Molecular genetics and evolution of disease resistance in cereals. New Phytol 212(2):320–332.  https://doi.org/10.1111/nph.14097CrossRefPubMedGoogle Scholar
  78. Krattinger S, Wicker T, Keller B (2009a) Map-based cloning of genes in Triticeae (Wheat and Barley). In: Muehlbauer GJ, Feuillet C (eds) Genetics and genomics of the triticeae. Springer, New York, pp 337–357.  https://doi.org/10.1007/978-0-387-77489-3_12
  79. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009b) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360CrossRefPubMedGoogle Scholar
  80. Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154(1):397PubMedPubMedCentralGoogle Scholar
  81. Lapierre H, Signoret PA (2004) Viruses and virus diseases of Poaceae (Gramineae). Editions Quae, FranceGoogle Scholar
  82. Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16(1):258.  https://doi.org/10.1186/s13059-015-0826-7CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66(1):513–545.  https://doi.org/10.1146/annurev-arplant-043014-114623CrossRefPubMedGoogle Scholar
  84. Lu X, Kracher B, Saur IML, Bauer S, Ellwood SR, Wise R, Yaeno T, Maekawa T, Schulze-Lefert P (2016) Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc Natl Acad Sci 113(42):E6486–E6495CrossRefPubMedGoogle Scholar
  85. Mago R, Spielmeyer W, Lawrence GJ, Ellis JG, Pryor AJ (2004) Resistance genes for rye stem rust (SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome. Genome 47(1):112–121.  https://doi.org/10.1139/g03-096CrossRefPubMedGoogle Scholar
  86. Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo M-C, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1:15186.  https://doi.org/10.1038/nplants.2015.186CrossRefPubMedGoogle Scholar
  87. Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177(3):743–755.  https://doi.org/10.1111/j.1469-8137.2007.02298.xCrossRefPubMedGoogle Scholar
  88. Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Munoz-Amatriain M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76(4):718–727.  https://doi.org/10.1111/tpj.12319CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505.  https://doi.org/10.1111/tpj.12294CrossRefPubMedPubMedCentralGoogle Scholar
  90. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang X-Q, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Šimková H, Staňková H, Vrána J, Chan S, Muñoz-Amatriaín M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Doležel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):427–433.  https://doi.org/10.1038/nature22043CrossRefPubMedGoogle Scholar
  91. Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubalakova M, Suchankova P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23(4):1249–1263.  https://doi.org/10.1105/tpc.110.082537CrossRefPubMedPubMedCentralGoogle Scholar
  92. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40(1):349–379CrossRefGoogle Scholar
  93. McGrann GRD, Stavrinides A, Russell J, Corbitt MM, Booth A, Chartrain L, Thomas WTB, Brown JKM (2014) A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot 65(4):1025–1037CrossRefPubMedPubMedCentralGoogle Scholar
  94. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci 88(21):9828–9832.  https://doi.org/10.1073/pnas.88.21.9828CrossRefPubMedGoogle Scholar
  95. Moscou MJ, Lauter N, Caldo RA, Nettleton D, Wise RP (2011a) Quantitative and temporal definition of the Mla transcriptional regulon during barley–powdery mildew interactions. Mol Plant Microbe Interact 24(6):694–705.  https://doi.org/10.1094/MPMI-09-10-0211CrossRefPubMedGoogle Scholar
  96. Moscou MJ, Lauter N, Steffenson B, Wise RP (2011b) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7(7):e1002208.  https://doi.org/10.1371/journal.pgen.1002208CrossRefPubMedPubMedCentralGoogle Scholar
  97. Moury B, Charron C, Janzac B, Simon V, Gallois JL, Palloix A, Caranta C (2014) Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): A game of mirrors impacting resistance spectrum and durability. Infect Genet Evol 27:472–480.  https://doi.org/10.1016/j.meegid.2013.11.024CrossRefPubMedGoogle Scholar
  98. Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182(4):817–828.  https://doi.org/10.1111/j.1469-8137.2009.02849.xCrossRefPubMedGoogle Scholar
  99. Niks RE, Qi X, Marcel TC (2015) Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu Rev Phytopathol 53(1):445–470.  https://doi.org/10.1146/annurev-phyto-080614-115928CrossRefPubMedGoogle Scholar
  100. Nirmala J, Brueggeman R, Maier C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A (2006) Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase RPG1. Proc Natl Acad Sci 103(19):7518–7523CrossRefPubMedGoogle Scholar
  101. Nirmala J, Dahl S, Steffenson BJ, Kannangara CG, von Wettstein D, Chen X, Kleinhofs A (2007) Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance. Proc Natl Acad Sci 104(24):10276–10281CrossRefPubMedGoogle Scholar
  102. Nirmala J, Drader T, Chen X, Steffenson B, Kleinhofs A (2010) Stem rust spores elicit rapid RPG1 phosphorylation. Mol Plant Microbe Interact 23(12):1635–1642.  https://doi.org/10.1094/MPMI-06-10-0136CrossRefPubMedGoogle Scholar
  103. Nirmala J, Drader T, Lawrence PK, Yin C, Hulbert S, Steber CM, Steffenson BJ, Szabo LJ, von Wettstein D, Kleinhofs A (2011) Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci 108(35):14676–14681CrossRefPubMedGoogle Scholar
  104. Ordon F, Kühne T (2014) Response to viral pathogens. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Heidelberg, pp 181–196.  https://doi.org/10.1007/978-3-662-44406-1_10
  105. Ordon F, Perovic D (2013) Virus resistance in barley. In: Translational genomics for crop breeding. Wiley Ltd, pp 63–75.  https://doi.org/10.1002/9781118728475.ch5
  106. Paulitz TC, Steffenson BJ (2010) Biotic stress in barley: disease problems and solutions. In: Barley. Wiley-Blackwell, pp 307–354.  https://doi.org/10.1002/9780470958636.ch11
  107. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341(6147):786CrossRefPubMedGoogle Scholar
  108. Perovic D, Kopahnke D, Steffenson BJ, Förster J, König J, Kilian B, Plieske J, Durstewitz G, Korzun V, Kraemer I, Habekuss A, Johnston P, Pickering R, Ordon F (2013) Genetic fine mapping of a novel leaf rust resistance gene and a Barley Yellow Dwarf Virus tolerance (BYDV) introgressed from Hordeum bulbosum by the use of the 9K iSelect chip. In: Zhang G, Li C, Liu X (eds) Advance in barley sciences: Proceedings of 11th international barley genetics symposium. Springer, Dordrecht, pp 269–284.  https://doi.org/10.1007/978-94-007-4682-4_23
  109. Perovic D, Kramer I, Habekuss A, Perner K, Pickering R, Proeseler G, Kanyuka K, Ordon F (2014) Genetic analyses of BaMMV/BaYMV resistance in barley accession HOR4224 result in the identification of an allele of the translation initiation factor 4e (Hv-eIF4E) exclusively effective against Barley mild mosaic virus (BaMMV). Theor Appl Genet 127(5):1061–1071.  https://doi.org/10.1007/s00122-014-2279-xCrossRefPubMedGoogle Scholar
  110. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14(1):21–29.  https://doi.org/10.1016/j.tplants.2008.10.006CrossRefPubMedGoogle Scholar
  111. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLOS ONE 7(2).  https://doi.org/10.1371/journal.pone.0032253
  112. Pritchard L, Birch PRJ (2014) The zigzag model of plant–microbe interactions: is it time to move on? Mol Plant Pathol 15(9):865–870.  https://doi.org/10.1111/mpp.12210CrossRefPubMedGoogle Scholar
  113. Rajaraman J (2016) Discovery and validation of genes for quantitative host- and nonhost-resistance in barley and wheat to powdery mildew attack. Dissertation, Martin-Luther University Halle-Wittenberg urn:nbn:de:gbv:3:4-18776:1-341Google Scholar
  114. Rajaraman J, Douchkov D, Hensel G, Stefanato FL, Gordon A, Ereful N, Caldararu OF, Petrescu A-J, Kumlehn J, Boyd LA, Schweizer P (2016) An LRR/Malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat. Front Plant Sci 7(1836).  https://doi.org/10.3389/fpls.2016.01836
  115. Ridout CJ, Skamnioti P, Porritt O, Sacristan S, Jones JDG, Brown JKM (2006) Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18(9):2402–2414CrossRefPubMedPubMedCentralGoogle Scholar
  116. Riedel C, Habekuß A, Schliephake E, Niks R, Broer I, Ordon F (2011) Pyramiding of Ryd2 and Ryd3 conferring tolerance to a German isolate of Barley yellow dwarf virus-PAV (BYDV-PAV-ASL-1) leads to quantitative resistance against this isolate. Theor Appl Genet 123(1):69.  https://doi.org/10.1007/s00122-011-1567-yCrossRefPubMedGoogle Scholar
  117. Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev Genet 7(11):862–872CrossRefPubMedGoogle Scholar
  118. Roux F, Voisin D, Badet T, Balagué C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15(5):427–432.  https://doi.org/10.1111/mpp.12138CrossRefPubMedGoogle Scholar
  119. Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2003) Mapping of Rym14(Hb), a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107(6):965–971.  https://doi.org/10.1007/s00122-003-1339-4CrossRefPubMedGoogle Scholar
  120. Ruge-Wehling B, Linz A, Habekuss A, Wehling P (2006) Mapping of Rym16(Hb), the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113(5):867–873.  https://doi.org/10.1007/s00122-006-0345-8CrossRefPubMedGoogle Scholar
  121. Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, Bayer M, Milne I, Marshall-Griffiths T, Heinen S, Hofstad A, Sharma R, Himmelbach A, Knauft M, van Zonneveld M, Brown JWS, Schmid K, Kilian B, Muehlbauer GJ, Stein N, Waugh R (2016) Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet 48(9):1024± .  https://doi.org/10.1038/ng.3612
  122. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BBH (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17(1):221.  https://doi.org/10.1186/s13059-016-1082-1CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sanfacon H (2015) Plant translation factors and virus resistance. Viruses 7(7):3392–3419.  https://doi.org/10.3390/v7072778CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sarris PF, Cevik V, Dagdas G, Jones JDG, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14(1):8.  https://doi.org/10.1186/s12915-016-0228-7CrossRefPubMedPubMedCentralGoogle Scholar
  125. Scheler B, Schnepf V, Galgenmüller C, Ranf S, Hückelhoven R (2016) Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. J Exp Bot 67(11):3263–3275CrossRefPubMedPubMedCentralGoogle Scholar
  126. Scholz M, Ruge-Wehling B, Habekuss A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4 (Hb): a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor Appl Genet 119(5):837–849.  https://doi.org/10.1007/s00122-009-1093-3CrossRefPubMedGoogle Scholar
  127. Schulze-Lefert P, Panstruga R (2011) A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci 16(3):117–125.  https://doi.org/10.1016/j.tplants.2011.01.001CrossRefPubMedGoogle Scholar
  128. Schweizer P (2014) Host and nonhost response to attack by fungal pathogens. In: Kumlehn J, Stein N (eds) Biotechnological approaches to barley improvement. Springer, Heidelberg, pp 197–235.  https://doi.org/10.1007/978-3-662-44406-1_11
  129. Schweizer P, Stein N (2011) Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant Microbe Interact 24(12):1492–1501.  https://doi.org/10.1094/mpmi-05-11-0107CrossRefPubMedGoogle Scholar
  130. Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Yang W, Jahoor A, Shimizu KK, Keller B, Schulze-Lefert P (2010) Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol Plant Microbe Interact 23(4):497–509.  https://doi.org/10.1094/MPMI-23-4-0497CrossRefPubMedGoogle Scholar
  131. Senthil-Kumar M, Mysore KS (2013) Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu Rev Phytopathol 51(1):407–427.  https://doi.org/10.1146/annurev-phyto-082712-102319CrossRefPubMedGoogle Scholar
  132. Shen Q-H, Zhou F, Bieri S, Haizel T, Shirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15(3):732–744CrossRefPubMedPubMedCentralGoogle Scholar
  133. Shen Q-H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ülker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315(5815):1098Google Scholar
  134. Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164CrossRefPubMedGoogle Scholar
  135. Shirasu K, Lahaye T, Tan M-W, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99(4):355–366.  https://doi.org/10.1016/S0092-8674(00)81522-6CrossRefPubMedGoogle Scholar
  136. Shtaya MJY, Sillero JC, Flath K, Pickering R, Rubiales D (2007) The resistance to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.) derived from H. vulgare x H. bulbosum crosses. Plant Breed 126(3):259–267CrossRefGoogle Scholar
  137. Silvar C, Perovic D, Casas AM, Igartua E, Ordon F (2011) Development of a cost-effective pyrosequencing approach for SNP genotyping in barley. Plant Breed 130(3):394–397.  https://doi.org/10.1111/j.1439-0523.2011.01853.xCrossRefGoogle Scholar
  138. Smith EN, Kruglyak L (2008) Gene–environment interaction in yeast gene expression. PLoS Biol 6(4):e83.  https://doi.org/10.1371/journal.pbio.0060083CrossRefPubMedPubMedCentralGoogle Scholar
  139. Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T, Gardner J, Wang B, Zhai W-X, Zhu L-H, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270(5243):1804Google Scholar
  140. Spies A, Korzun L, Bayles R, Rajaraman J, Himmelbach A, Hedley PE, Schweizer P (2012) Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance. Front Plant Sci 2(Article 113)Google Scholar
  141. St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48(1):247–268.  https://doi.org/10.1146/annurev-phyto-080508-081904
  142. Stam R, Mantelin S, McLellan H, Thilliez G (2014) The role of effectors in non host resistance to filamentous plant pathogens. Front Plant Sci 5.  https://doi.org/10.3389/fpls.2014.00582
  143. Steffenson BJ (1992) Analysis of durable resistance to stem rust in barley. Euphytica 63(1):153–167.  https://doi.org/10.1007/BF00023920CrossRefGoogle Scholar
  144. Steffenson BJ, Jin Y (2006) Resistance to race TTKS of Puccinia graminis f. sp. tritici in barley (Abstr.). Phytopathology 96(S110)Google Scholar
  145. Steffenson BJ, Jin Y, Rossnagel BG, Rasmussen JB, Kao K (1995) Genetics of multiple disease resistance in a doubled-haploid population of barley. Plant Breed 114(1):50–54CrossRefGoogle Scholar
  146. Steffenson BJ, Jin Y, Brueggeman RS, Kleinhofs A, Sun Y (2009) Resistance to stem rust race TTKSK maps to the rpg4/Rpg5 complex of chromosome 5H of barley. Phytopathology 99(10):1135–1141.  https://doi.org/10.1094/PHYTO-99-10-1135CrossRefPubMedGoogle Scholar
  147. Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, Ordon F, Graner A (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42(6):912–922.  https://doi.org/10.1111/j.1365-313X.2005.02424.xCrossRefPubMedGoogle Scholar
  148. Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, Lagudah ES, Wulff BBH (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34(6):652–655.  https://doi.org/10.1038/nbt.3543CrossRefPubMedGoogle Scholar
  149. Surana P, Xu R, Fuerst G, Chapman AVE, Nettleton D, Wise RP (2017) Inter-chromosomal transfer of immune regulation during infection of barley with the powdery mildew pathogen. G3: Genes|Genomes|Genet Early online.  https://doi.org/10.1534/g3.117.300125
  150. Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, Koga H, Nishizawa Y, O’Connell R, Kubo Y (2010) HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. BMC Plant Biol 10(1):288.  https://doi.org/10.1186/1471-2229-10-288CrossRefPubMedPubMedCentralGoogle Scholar
  151. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066.  https://doi.org/10.1126/science.277.5329.1063CrossRefPubMedGoogle Scholar
  152. Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23(1):4–15CrossRefPubMedPubMedCentralGoogle Scholar
  153. Trujillo M, Troeger M, Niks RE, Kogel KH, Huckelhoven R (2004) Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Mol Plant Pathol 5(5):389–396CrossRefPubMedGoogle Scholar
  154. Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13(4):459–465.  https://doi.org/10.1016/j.pbi.2010.04.006CrossRefPubMedGoogle Scholar
  155. Verchot J (2012) Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front Plant Sci 3.  https://doi.org/10.3389/fpls.2012.00275
  156. von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111(3):583–590.  https://doi.org/10.1007/s00122-005-2049-xCrossRefGoogle Scholar
  157. Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R (2013) The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Mol Plant Microbe Interact 26(4):407–418.  https://doi.org/10.1094/MPMI-06-12-0146-RCrossRefPubMedGoogle Scholar
  158. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951.  https://doi.org/10.1038/nbt.2969CrossRefPubMedPubMedCentralGoogle Scholar
  159. Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (Powdery Mildew) resistance cluster Is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153(4):1929Google Scholar
  160. Wei F, Wing RA, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14(8):1903–1917CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wendler N, Mascher M, Noh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next-generation sequencing. Plant Biotechnol J 12(8):1122–1131.  https://doi.org/10.1111/pbi.12219CrossRefPubMedGoogle Scholar
  162. Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant 8(10):1507–1519.  https://doi.org/10.1016/j.molp.2015.05.004CrossRefPubMedGoogle Scholar
  163. Williams RBH, Chan EKF, Cowley MJ, Little PFR (2007) The influence of genetic variation on gene expression. Genome Res 17(12):1707–1716CrossRefPubMedGoogle Scholar
  164. Wu C-H, Krasileva K, Banfield M, Terauchi R, Kamoun S (2015) The “sensor domains” of plant NLR proteins: more than decoys? Front Plant Sci 6:134PubMedPubMedCentralGoogle Scholar
  165. Yang P, Perovic D, Habekuss A, Zhou RN, Graner A, Ordon F, Stein N (2013) Gene-based high-density mapping of the gene rym7 conferring resistance to Barley mild mosaic virus (BaMMV). Mol Breed 32(1):27–37.  https://doi.org/10.1007/s11032-013-9842-zCrossRefGoogle Scholar
  166. Yang P, Habekuss A, Ordon F, Stein N (2014a) Analysis of bymovirus resistance genes on proximal barley chromosome 4HL provides the basis for precision breeding for BaMMV/BaYMV resistance. Theor Appl Genet 127(7):1625–1634.  https://doi.org/10.1007/s00122-014-2324-9CrossRefPubMedGoogle Scholar
  167. Yang P, Lupken T, Habekuss A, Hensel G, Steuernagel B, Kilian B, Ariyadasa R, Himmelbach A, Kumlehn J, Scholz U, Ordon F, Stein N (2014b) PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci 111(6):2104–2109.  https://doi.org/10.1073/pnas.1320362111CrossRefPubMedGoogle Scholar
  168. Yang P, Hofinger B, Kanyuka K, Kilian B, Graner A, Ordon F, Stein N (2017) Sequence diversification in recessive alleles of two host factor genes suggests adaptive selection for bymovirus resistance in cultivated barley from East Asia. Theor Appl Genet 130:331–344CrossRefPubMedGoogle Scholar
  169. Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45(6):2563–2572.  https://doi.org/10.2135/cropsci2005.0236CrossRefGoogle Scholar
  170. Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152(4):2053–2066CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhang L, Fetch T, Nirmala J, Schmierer D, Brueggeman R, Steffenson B, Kleinhofs A (2006) Rpr1, a gene required for Rpg1-dependent resistance to stem rust in barley. Theor Appl Genet 113(5):847–855.  https://doi.org/10.1007/s00122-006-0342-yCrossRefPubMedGoogle Scholar
  172. Zhang Y, Lubberstedt T, Xu M (2013) The genetic and molecular basis of plant resistance to pathogens. J Genet Genomics 40(1):23–35.  https://doi.org/10.1016/j.jgg.2012.11.003CrossRefPubMedGoogle Scholar
  173. Zhou F, Kurth J, Wei F, Elliott C, Valè G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13(2):337–350CrossRefPubMedPubMedCentralGoogle Scholar
  174. Zierold UWE, Scholz UWE, Schweizer P (2005) Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol 6(2):139–151.  https://doi.org/10.1111/j.1364-3703.2005.00271.xCrossRefPubMedGoogle Scholar
  175. Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35(7):345–351.  https://doi.org/10.1016/j.it.2014.05.004CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature (outside the USA) 2018

Authors and Affiliations

  • J. Mitch Elmore
    • 1
    • 2
  • Dragan Perovic
    • 3
  • Frank Ordon
    • 3
  • Patrick Schweizer
    • 4
  • Roger P. Wise
    • 1
    • 2
  1. 1.Corn Insects and Crop Genetics Research, USDA—Agriculture Research ServiceIowa State UniversityAmesUSA
  2. 2.Department of Plant Pathology and MicrobiologyIowa State UniversityAmesUSA
  3. 3.Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress ToleranceQuedlinburgGermany
  4. 4.Pathogen-Stress Genomics LabLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany

Personalised recommendations