Molecular Mapping and Cloning of Genes and QTLs

  • Mats HanssonEmail author
  • Takao Komatsuda
  • Nils Stein
  • Gary J. Muehlbauer
Part of the Compendium of Plant Genomes book series (CPG)


The barley genome is comprised of more than 39,000 high-confidence genes, which represent many valuable targets for breeders as well as plant researchers trying to understand the genetic network controlling the various grass species, especially members of the Triticeae tribe including barley, wheat, and rye. The present chapter provides an overview of how past activities with barley mutants, markers, and genetic maps have laid the foundation for the present physical map based on the barley genome. We also describe how this new genome sequence resource can be integrated with mapping approaches to facilitate the cloning of genes and quantitative trait loci (QTL). Although the cost of genomic sequencing is likely to decrease, we assume that mapping of genes deficient in mutants will remain an important approach for gene identification. We present a comprehensive list of barley genes identified up to 2017.


Barley Candidate gene sequencing Cloned genes in barley Genetic mapping Mutants Physical mapping 


  1. Axelsson E, Lundqvist J, Sawicki A et al (2006) Recessiveness and dominance in barley mutants deficient in Mg-chelatase subunit D, an AAA protein involved in chlorophyll biosynthesis. Plant Cell 18:3606–3616PubMedPubMedCentralCrossRefGoogle Scholar
  2. Badr A, Muller K, Schafer-Pregl R et al (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376PubMedPubMedCentralCrossRefGoogle Scholar
  4. Beier S, Himmelbach A, Colmsee C et al (2017) Construction of a map-based reference genome sequence for barley Hordeum vulgare L. Sci Data 4:170044PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bilgic H, Cho S, Garvin DF, Muehlbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines. Genome 50:898–906PubMedCrossRefPubMedCentralGoogle Scholar
  6. Braumann I, Hansson M (2012) Barley plants with short culm. In: Danish Patent and Trademark Office, DenmarkGoogle Scholar
  7. Brueggeman R, Druka A, Nirmala J et al (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105:14970–14975PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brueggeman R, Rostoks N, Kudrna D et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bulgarelli D, Biselli C, Collins NC et al (2010) The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS ONE 5Google Scholar
  10. Bull H, Casao CM, Zwirek M et al (2017) Barley SIX-ROWED SPIKE3 encodes a putative Jumonji C-type H3K9me2/me3 demethylase that represses lateral spikelet fertility. Nature Commun 8:936Google Scholar
  11. Burton RA, Ma G, Baumann U et al (2010) A customized gene expression microarray reveals that the brittle stem phenotype fs2 of barley is attributable to a retroelement in the HvCesA4 cellulose synthase gene. Plant Physiol 153:1716–1728PubMedPubMedCentralCrossRefGoogle Scholar
  12. Büschges R, Hollricher K, Panstruga R et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705PubMedCrossRefPubMedCentralGoogle Scholar
  13. Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150PubMedCrossRefPubMedCentralGoogle Scholar
  14. Campoli C, Pankin A, Drosse B, Casao CM, Davis SJ, von Korff M (2013) HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199:1045–1059PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cho S, Garvin DF, Muehlbauer GJ (2006) Transcriptome analysis and physical mapping of barley genes in wheat-barley chromosome addition lines. Genetics 172:1277–1285PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chono M, Honda I, Zeniya H et al (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133:1209–1219PubMedPubMedCentralCrossRefGoogle Scholar
  17. Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582CrossRefGoogle Scholar
  18. Cockram J, White J, Zuluaga DL et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A 107:21611–21616PubMedPubMedCentralCrossRefGoogle Scholar
  19. Colas I, Macaulay M, Higgins JD et al (2016) A spontaneous mutation in MutL-Homolog 3 (HvMLH3) affects synapsis and crossover resolution in the barley desynaptic mutant des10. New Phytol 212:693–707PubMedCrossRefPubMedCentralGoogle Scholar
  20. Collins NC, Thordal-Christensen H, Lipka V et al (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977PubMedCrossRefPubMedCentralGoogle Scholar
  21. Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dabbert T, Okagaki RJ, Cho S, Heinen S, Boddu J, Muehlbauer GJ (2010) The genetics of barley low-tillering mutants: low number of tillers-1 (lnt1). Theor Appl Genet 121:705–715PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dockter C, Gruszka D, Braumann I et al (2014) Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol 166:1912–1927PubMedPubMedCentralCrossRefGoogle Scholar
  24. Druka A, Franckowiak J, Lundqvist U et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627PubMedCrossRefGoogle Scholar
  25. Druka A, Kudrna D, Rostoks N, Brueggeman R, von Wettstein D, Kleinhofs A (2003) Chalcone isomerase gene from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–178PubMedCrossRefPubMedCentralGoogle Scholar
  26. Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609PubMedPubMedCentralCrossRefGoogle Scholar
  27. Faure S, Turner AS, Gruszka D et al (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci USA 109:8328–8333PubMedCrossRefPubMedCentralGoogle Scholar
  28. Franckowiak J (1996) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21Google Scholar
  29. Fu D, Szucs P, Yan L et al (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Res Notes 2:258PubMedPubMedCentralCrossRefGoogle Scholar
  31. Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256PubMedCrossRefGoogle Scholar
  32. Gustafsson Å (1938) Studies on the genetic basis of chlorophyll formation and the mechanism of induced mutating. Hereditas 24:33–93Google Scholar
  33. Gustafsson Å (1940) The mutation system of the chlorophyll apparatus. Lunds Univ Årsskr NF 36:1–40Google Scholar
  34. Gustafsson Å, Mac Key J (1948) The genetical effects of mustard gas substances and neutrons. Hereditas 34:371–386CrossRefGoogle Scholar
  35. Hagberg A, Hagberg G Induced traslocations in barley. In: Proceedings of the mutations in plant breeding II, 1968. International Atomic Energy Agency, Vienna, AustriaGoogle Scholar
  36. Halterman DA, Zhou FS, Wei FS, Wise RP, Schultze-Lefert P (2001) The Mla6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specific to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25:335–348PubMedCrossRefGoogle Scholar
  37. Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci USA 96:1744–1749PubMedCrossRefGoogle Scholar
  38. Hansson M, Gough SP, Kannangara CG, von Wettstein D (1998) Chromosomal location of six barley genes encoding enzymes of chlorophyll and heme biosynthesis and the sequence of the ferrochelatase gene identify two regulatory genes. Plant Physiol Biochem 36:545–554CrossRefGoogle Scholar
  39. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391PubMedCrossRefPubMedCentralGoogle Scholar
  40. Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447CrossRefGoogle Scholar
  41. Himi E, Taketa S (2015a) Barley Ant17, encoding flavanone 3-hydroxylase (F3H), is a promising target locus for attaining anthocyanin/proanthocyanidin-free plants without pleiotropic reduction of grain dormancy. Genome 58:43–53PubMedCrossRefPubMedCentralGoogle Scholar
  42. Himi E, Taketa S (2015b) Isolation of candidate genes for the barley Ant1 and wheat Rc genes controlling anthocyanin pigmentation in different vegetative tissues. Mol Genet Genomics 290:1287–1298PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hor KS (1924) Interrelations of genetic factors in barley. Genetics 9:151–180PubMedPubMedCentralGoogle Scholar
  44. Horvath H, Rostoks N, Brueggeman R, Steffenson B, von Wettstein D, Kleinhofs A (2003) Genetically engineered stem rust resistance in barley using the Rpg1 gene. Proc Natl Acad Sci USA 100:364–369PubMedCrossRefPubMedCentralGoogle Scholar
  45. Houston K, Druka A, Bonar N et al (2012) Analysis of the barley bract suppression gene Trd1. Theor Appl Genet 125:33–45PubMedCrossRefPubMedCentralGoogle Scholar
  46. Houston K, McKim SM, Comadran J et al (2013) Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA 110:16675–16680PubMedCrossRefPubMedCentralGoogle Scholar
  47. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  48. Islam AKMR, Shephard KW, Sparrow DHB (1981) Isolation and characterization of euplamisc wheat-barley chromosome addition lines. Heredity 46:161–174CrossRefGoogle Scholar
  49. Ito A, Yasuda A, Yamaoka K et al (2017) Brachytic 1 of barley (Hordeum vulgare L.) encodes the alpha subunit of heterotrimeric G protein. J Plant Physiol 213:209–215PubMedCrossRefGoogle Scholar
  50. Jensen PE, Willows RD, Petersen BL et al (1996) Structural genes for Mg-chelatase subunits in barley: Xantha-f, -g and -h. Mol Gen Genet 250:383–394PubMedPubMedCentralGoogle Scholar
  51. Jost M, Taketa S, Mascher M et al (2016) A homolog of Blade-On-Petiole 1 and 2 (BOP1/2) controls internode length and homeotic changes of the barley inflorescence. Plant Physiol 171:1113–1127PubMedPubMedCentralGoogle Scholar
  52. Jöst M, Hensel G, Kappel C et al (2016) The INDETERMINATE DOMAIN protein BROAD LEAF1 limits barley leaf width by restricting lateral proliferation. Curr Biol 26:903–909PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kleinhofs A, Kilian A, Saghai Maroof MA et al (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712PubMedCrossRefGoogle Scholar
  55. Komatsuda T, Pourkheirandish M, He C et al (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429PubMedCrossRefPubMedCentralGoogle Scholar
  56. Koppolu R, Anwar N, Sakuma S et al (2013) Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc Natl Acad Sci USA 110:13198–13203PubMedCrossRefPubMedCentralGoogle Scholar
  57. Krattinger S, Wicker T, Keller B (2009) Map-based cloning of genes in Triticeae (wheat and barley). In: Feulliet CJ, Muehlbauer G (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models, vol 7, pp 337–357Google Scholar
  58. Lee KP, Kim C, Lee DW, Apel K (2003) TIGRINA d, required for regulating the biosynthesis of tetrapyrroles in barley, is an ortholog of the FLU gene of Arabidopsis thaliana. FEBS Lett 553:119–124PubMedCrossRefPubMedCentralGoogle Scholar
  59. Li L, Li D, Liu S et al (2013) The maize glossy13 gene, cloned via BSR-Seq and Seq-walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes. PLoS ONE 8:e82333PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406PubMedPubMedCentralCrossRefGoogle Scholar
  61. Löve Á, Löve D (1961) Chromosome numbers of central and northwest European plant species. Opera Bot 5:1–581Google Scholar
  62. Marcel TC, Varshney RK, Barbieri M et al (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500PubMedCrossRefGoogle Scholar
  63. Mascher M, Gundlach H, Himmelbach A et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mascher M, Jost M, Kuon JE et al (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mascher M, Muehlbauer GJ, Rokhsar DS et al (2013a) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mascher M, Richmond TA, Gerhardt DJ et al (2013b) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miyake K, Imai Y (1922) Genetic studies in barley I. Bot Mag Tokyo 36:25–38CrossRefGoogle Scholar
  68. Morell MK, Kosar-Hashemi B, Cmiel M et al (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J 34:173–185PubMedCrossRefPubMedCentralGoogle Scholar
  69. Mrizova K, Holaskova E, Oz MT, Jiskrova E, Frebort I, Galuszka P (2014) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 32:137–157PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. Plant Cell Physiol 53:1232–1246PubMedCrossRefPubMedCentralGoogle Scholar
  71. Muñoz-Amatriaín M, Moscou MJ, Bhat PR et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249CrossRefGoogle Scholar
  72. Müller KJ, Romano N, Gerstner O et al (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730PubMedCrossRefPubMedCentralGoogle Scholar
  73. Nair SK, Wang N, Turuspekov Y et al (2010) Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci USA 107:490–495PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nakamura S, Pourkheirandish M, Morishige H et al (2016) Mitogen-Activated Protein Kinase Kinase 3 regulates seed dormancy in barley. Curr Biol 26:775–781PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nilsson-Ehle H (1922) Über freie Kombination und Koppelung verschiedener Chlorophyllerbeinheiten bei Gerste. Hereditas 3:191–199CrossRefGoogle Scholar
  76. Okagaki RJ, Haaning A, Bilgic H, Heinen S, Druka A, Bayer M, Waugh R, Muehlbauer GJ (2018) ELIGULUM-A regulates lateral branch and leaf development in barley. Plant Physiol. Scholar
  77. Olsson U, Sirijovski N, Hansson M (2004) Characterization of eight barley xantha-f mutants deficient in magnesium chelatase. Plant Physiol Biochem 42:557–564PubMedCrossRefPubMedCentralGoogle Scholar
  78. Pankin A, Campoli C, Dong X et al (2014) Mapping-by-sequencing identifies HvPHYTOCHROME C as a candidate gene for the early maturity 5 locus modulating the circadian clock and photoperiodic flowering in barley. Genetics 198:383–396PubMedPubMedCentralCrossRefGoogle Scholar
  79. Persson G, Hagberg A (1969) Induced variation in a quantitative character in Barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61:115–178CrossRefGoogle Scholar
  80. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101PubMedCrossRefGoogle Scholar
  81. Pourkheirandish M, Hensel G, Kilian B et al (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539PubMedCrossRefGoogle Scholar
  82. Poursarebani N, Seidensticker T, Koppolu R et al (2015) The genetic basis of composite spike form in barley and ‘miracle-wheat’. Genetics 201:155–165PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ramsay L, Comadran J, Druka A et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172PubMedCrossRefGoogle Scholar
  84. Ramsay L, Macaulay M, degli Ivanissevich S et al (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedPubMedCentralGoogle Scholar
  85. Rostoks N, Mudie S, Cardle L et al (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527PubMedCrossRefPubMedCentralGoogle Scholar
  86. Rzeznicka K, Walker CJ, Westergren T et al (2005) Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis. Proc Natl Acad Sci USA 102:5886–5891PubMedCrossRefPubMedCentralGoogle Scholar
  87. Sanchez-Martin J, Steuernagel B, Ghosh S et al (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:221PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity (Edinb) 103:110–117CrossRefGoogle Scholar
  89. Sato K, Yamane M, Yamaji N et al (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625PubMedPubMedCentralCrossRefGoogle Scholar
  90. Schneider LM, Adamski NM, Christensen CE et al (2016) The Cer-cqu gene cluster determines three key players in a beta-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes. J Exp Bot 67:2715–2730PubMedCentralCrossRefGoogle Scholar
  91. Shin JS, Chao S, Corpuz L, Blake T (1990) A partial map of the barley genome incorporating restriction fragment length polymorphism, polymerase chain reaction, isozyme, and morphological marker loci. Genome 33:803–810PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shirasu K, Lahaye T, Tan MW, Zhou F, Azevedo C, Schulze-Lefert P (1999) A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell 99:355–366PubMedCrossRefPubMedCentralGoogle Scholar
  93. Smith L (1951) Cytology and genetics of barley. Bot Rev 17:1–51CrossRefGoogle Scholar
  94. Stadler LJ (1928) The rate of induced mutation in relation to dormancy, temperature and dosage. Anatomical Record 41Google Scholar
  95. Stein N, Perovic D, Kumlehn J et al (2005) The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J 42:912–922PubMedCrossRefPubMedCentralGoogle Scholar
  96. Stein N, Prasad M, Scholz U et al (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sutton T, Baumann U, Hayes J et al (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449PubMedCrossRefPubMedCentralGoogle Scholar
  98. Szarejko I, Szurman-Zubrzycka M, Nawrot M et al (2016) Creation of a TILLING population in barley after chemical mutagensesis with sodium azide and MNU. In: Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (eds) Biotechnologies for plant mutation breeding. Springer International Publication, Berlin, pp 91–111Google Scholar
  99. Szücs P, Blake VC, Bhat PR et al (2009) An integrated resource for barley lingage map and malting quality QTL alignment. Plant Genome 2:134–140CrossRefGoogle Scholar
  100. Taketa S, Amano S, Tsujino Y et al (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067PubMedCrossRefPubMedCentralGoogle Scholar
  101. Talame V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tavakol E, Okagaki R, Verderio G et al (2015) The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol 168:164–174PubMedPubMedCentralCrossRefGoogle Scholar
  103. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedCrossRefPubMedCentralGoogle Scholar
  104. van Esse GW, Walla A, Finke A, Koornneef M, Pecinka A, von Korff M (2017) Six-rowed spike3 (VRS3) is a histone demethylase that controls lateral spikelet development in barley. Plant Physiol 174:2397–2408PubMedPubMedCentralCrossRefGoogle Scholar
  105. Varshney RK, Marcel TC, Ramsay L et al (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103PubMedCrossRefPubMedCentralGoogle Scholar
  106. Wei F, Gobelman-Werner K, Morroll SM et al (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948PubMedPubMedCentralGoogle Scholar
  107. Wendt T, Holme I, Dockter C et al (2016) HvDep1 is a positive regulator of culm elongation and grain size in barley and impacts yield in an environment-dependent manner. PLoS ONE 11:e0168924PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wenzl P, Li H, Carling J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206CrossRefGoogle Scholar
  109. von Zitzewitz J, Szucs P, Dubcovsky J et al (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467CrossRefGoogle Scholar
  110. Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857PubMedPubMedCentralCrossRefGoogle Scholar
  111. Xu Y, Jia Q, Zhou G et al (2017) Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biol 17:11PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang P, Lupken T, Habekuss A et al (2014) PROTEIN DISULFIDE ISOMERASE LIKE 5-1 is a susceptibility factor to plant viruses. Proc Natl Acad Sci U S A 111:2104–2109PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yoshikawa T, Tanaka SY, Masumoto Y et al (2016) Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. Breed Sci 66:416–424PubMedPubMedCentralCrossRefGoogle Scholar
  114. Youssef HM, Eggert K, Koppolu R et al (2017) VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat Genet 49:157–161PubMedCrossRefGoogle Scholar
  115. Yuo T, Yamashita Y, Kanamori H et al (2012) A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot 63:5223–5232PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zakhrabekova S, Dockter C, Ahmann K et al (2015) Genetic linkage facilitates cloning of Ert-m regulating plant architecture in barley and identified a strong candidate of Ant1 involved in anthocyanin biosynthesis. Plant Mol Biol 88:609–626PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zakhrabekova S, Gough SP, Braumann I et al (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci USA 109:4326–4331PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mats Hansson
    • 1
    Email author
  • Takao Komatsuda
    • 2
  • Nils Stein
    • 3
  • Gary J. Muehlbauer
    • 4
    • 5
  1. 1.Department of BiologyLund UniversityLundSweden
  2. 2.National Institute of Agrobiological SciencesTsukubaJapan
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Stadt SeelandGermany
  4. 4.Department of Plant and Microbial BiologyUniversity of MinnesotaSt. PaulUSA
  5. 5.Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA

Personalised recommendations