Advertisement

Economic and Academic Importance of Barley

  • Peter Langridge
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Barley has had an interesting history. It is thought to be the first crop domesticated and developed as the staple food for the earliest farmers. It has remained an important food in many regions but its main uses now are as an animal feed and for beer production. While production for the other major cereal crops, maize, rice and wheat, has continued to grow, barley production has stagnated over the past two decades. Nevertheless, over the last century, barley has been an important crop model for a wide range of studies on genetics, biochemistry and developmental biology, particularly for barley’s close relative, wheat. Many key concepts and tools in modern crop research can be traced back to early studies on barley. As techniques for genetic and genome analysis improve, and genomic research in wheat becomes more tractable, the role of barley as a model is likely to shift. However, there are several aspects of barley that are likely to keep it as an important crop for study.

Keywords

Barley End uses Science Production Domestication Disease Mutation Malting 

References

  1. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  2. Allaby RG (2015) Barley domestication: the end of a central dogma? Genome Biol 16:176–178CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allard RW (1999) History of plant population genetics. Annu Rev Genet 33:1–27CrossRefPubMedGoogle Scholar
  4. Baik B-K, Ullrich SE (2008) Barley for food: characteristics, improvement and renewed interest. J Cereal Sci 48:233–242CrossRefGoogle Scholar
  5. Beales J, Turner A, Griffiths S, Snape J, Laurie D (2007) A pseudo-response regulator is missexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733CrossRefPubMedGoogle Scholar
  6. Betts NS, Berkowitz O, Liu RJ, Collins HM, Skadhauge B, Dockter C, Burton RA, Whelan J, Fincher GB (2017) Isolation of tissues and preservation of RNA from intact, germinated barley grain. Plant J 91:754–765CrossRefPubMedGoogle Scholar
  7. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705CrossRefPubMedGoogle Scholar
  8. Chandler PM, Zwar JA, Jacobsen JV, Higgins TJ, Inglis AS (1984) The effects of gibberellic acid and abscisic acid on α-amylase mRNA levels in barley aleurone layers studies using an α-amylase cDNA clone. Plant Mol Biol 3:407–418CrossRefPubMedGoogle Scholar
  9. Chrispeels MJ, Varner J (1967) Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol 42:398–406CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244CrossRefPubMedGoogle Scholar
  11. Dawson IK, Russell J, Powell W, Steffensen B, Thomas WTB, Waugh R (2015) Barley: a translational model for adaption to climate change. New Phytol 206:913–931CrossRefPubMedGoogle Scholar
  12. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627CrossRefPubMedGoogle Scholar
  13. FAO (2016) Food outlook: biannual report on global food markets. ISSN 1560-8182, http://www.fao.org/3/a-i5703e.pdf
  14. Fox GP, Panozzo JF, Li CD, Lance RCM, Inkerman PA, Henry RJ (2003) Molecular basis of barley quality. Aust J Agric Res 54:1081–1101CrossRefGoogle Scholar
  15. Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65CrossRefPubMedGoogle Scholar
  16. Gómez-Cadenas A, Zentella R, Walker-Simmons MK, Ho T-HD (2001) Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667–679CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gubatz S, Dercksen VJ, Bruess C, Weschke W, Wobus U (2007) Analysis of barley (Hordeum vulgare) grain development using three-dimensional digital models. Plant J 52:779–790CrossRefPubMedGoogle Scholar
  18. Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891PubMedPubMedCentralGoogle Scholar
  19. Jacobsen JV, Varner J (1967) Gibberellic acid-induced synthesis of protease by isolated aleurone layers of barley. Plant Physiol 42:1596–1600CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kadziola A, Abe J, Svensson B, Haser R (1994) Crystal and molecular structure of barley α-amylase. J Mol Biol 239:104–121CrossRefPubMedGoogle Scholar
  21. Knüpfer R (2009) Triticeae genetic resources in ex situ genebank collections. In Muehlbauer GJ, Feuillet C (eds) Genetic and genomics of the triticeae. Plant genetics and genomics: crops and models, vol 7. Springer Science, New York, USA, pp 31–80Google Scholar
  22. Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429CrossRefPubMedGoogle Scholar
  23. Kusch S, Panstruga R (2017) Mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. MPMI 30:179–189CrossRefPubMedGoogle Scholar
  24. Lanahan MB, Ho T, Rogers SW, Rogers JC (1992) A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell 4:203–211PubMedPubMedCentralGoogle Scholar
  25. Lundqvist U (2014) Scandinavian mutation research in barley—a historical review. Hereditas 151:123–131CrossRefPubMedGoogle Scholar
  26. McCouch S, Baute GP, Bradeen J, Bramel P, Bretting PK, Buckler E, Burke JM, Charest D, Cloutier S, Cole G, Dempewolf H, Dingkuhn M, Feuillet C, Gepts P, Grattapaglia D, Guarino L, Jackson S, Knapp S, Langridge P, Lawton-Rauh A, Lijua Q, Lusty C, Michael T, Myles S, Naito K, Nelson RL, Pontarollo R, Richards CM, Rieseberg L, Ross-Ibarra J, Rounsley S, Sackville Hamilton R, Schurr U, Stein N, Tomooka N, van der Knaap E, van Tassel D, Toll J, Valls J, Varshney RK, Ward J, Waugh R, Wenzl P, Zamir D (2013) Agriculture: feeding the future. Nature 499:23–24CrossRefPubMedGoogle Scholar
  27. Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294CrossRefPubMedGoogle Scholar
  28. Newman RK, Newman CW (1991) Barley as a food grain. Cereal Foods World 36:800–805Google Scholar
  29. Newman CW, Newman RK (2006) A brief history of barley foods. Cereal Foods World 51:4–7Google Scholar
  30. Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, Azhaguvel P, Sakuma S, Dhanagond S, Sharma R, Mascher M, Himmelbach A, Gottwald S, Nair SK, Tagiri A, Yukuhiro F, Nagamura Y, Kanamori H, Matsumoto T, Willcox G, Middleton CP, Wicker T, Walther A, Waugh R, Fincher GB, Stein N, Kumlehn J, Sato K, Komatsuda T (2015) Evolution of the grain dispersal system in barley. Cell 162:527–539CrossRefPubMedGoogle Scholar
  31. Riehl S, Zeidi M, Conard NJ (2013) Emergence of agriculture in the foothills of the Zagros mountains of Iran. Science 341:65–67CrossRefPubMedGoogle Scholar
  32. Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium (IBSC)—at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shewry PR, Hawkesford MJ, Piironen V, Lampi A-M, Gebruers K, Boros D, Andersson AAM, Aman P, Rakszegi M, Bedo Z (2013) Natural variation in grain composition of wheat and related cereals. J Agric Food Chem 61:8295–8303CrossRefPubMedGoogle Scholar
  34. Skadhauge B, Lok F, Breddam K, Olsen O, Bech M, Knudsen S (2011) Barley with reduced lipoxygenase activity and beverage prepared therefrom. US Patent 0318469A1Google Scholar
  35. Slakeski N, Fincher GB (1992) Developmental regulation of (1 → 3, 1 → 4)-β-glucanase gene expression in barley tissue-specific expression of individual isoenzymes. Plant Physiol 99:1226–1231CrossRefPubMedPubMedCentralGoogle Scholar
  36. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci USA 105:4062–4067CrossRefPubMedGoogle Scholar
  37. Turner A, Beales J, Faure S, Dunford R, Laurie D (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034CrossRefPubMedGoogle Scholar
  38. Varghese JN, Garrett TPJ, Colman PM, Chen L, Høj P, Fincher GB (1994) The three-dimensional structures of two plant β-glucan endohydrolases with distinct substrate specificities. Proc Natl Acad Sci USA 91:2785–2789CrossRefPubMedGoogle Scholar
  39. Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wei W, Bilsborrow PE, Hooley P, Fincham DA, Lombi E, Forster BP (2003) Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil 250:183–191CrossRefGoogle Scholar
  41. Wendler N, Mascher M, Noh C, Himmelbach A, Scholz U, Ruge-Wehling B, Stein N (2014) Unlocking the secondary gene-pool of barley with next generations sequencing. Plant Biotechnol J 12:1122–1131CrossRefPubMedGoogle Scholar
  42. You L, Wood-Sichra U, Fritz S, Guo Z, See L, Koo J (2014) Spatial production allocation model (SPAM) 2005 v2.0., 10 Jan 2017. Available from http://mapspam.info
  43. Zhang RX, Tucker MR, Burton RA, Shirley NJ, Little A, Morris J, Milne L, Houston K, Hedley P, Waugh R, Fincher GB (2016) The dynamics of transcript abundance during cellularization of developing barley endosperm. Plant Physiol 170:1549–1565PubMedPubMedCentralGoogle Scholar
  44. Zohary D, Hopf M (1988) Domestication of plants in the old world. Clarendon Press, Oxford, EnglandGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Agriculture, Food and WineUniversity of AdelaideAdelaideAustralia

Personalised recommendations