Advertisement

Middle Ear Infection and Hearing Loss

  • Arwa Kurabi
  • Daniel Schaerer
  • Allen F. Ryan
Chapter

Abstract

The primary inflammatory disease of the middle ear (ME) is otitis media (OM), a common pediatric infection that accounts for more office visits and surgeries than any other pediatric condition. It also affects adults to a lesser degree. The presence of inflammatory mediators and cells is one of the hallmarks of OM. It is mediated primarily by innate immune receptors, which interact with molecules from the bacteria that cause ME infections without the need for prior sensitization. Chronic and recurrent ME infections in children lead to hearing loss during critical periods of language acquisition and learning, causing delays in reaching developmental milestones and if left untreated, have the potential risks of permanent damage to the middle and inner ear. In this review, we document the presence of inflammation in the ME during OM, discuss current evidence implicating innate immunity in the generation and regulation of ME inflammation, and review the effects of ME inflammation and infection on hearing, auditory processing, the acquisition of language and learning.

Keywords

Otitis media Innate immunity Inflammatory mediators 

References

  1. Aarhus L, Tambs K, Kvestad E, Engdahl B. Childhood otitis media: a cohort study with 30-year follow-up of hearing (The HUNT study). Ear Hear. 2015;36(3):302–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Acuin J. Chronic suppurative otitis media: burden of illness and management options. Geneva, Switzerland: World Health Organization; 2004. Available: http://www.who.int/pbd/publications/Chronicsuppurativeotitis_media.pdfGoogle Scholar
  3. Ahmed S, Shapiro NL. Bhattacharyya N. Incremental health care utilization and costs for acute otitis media in children. Laryngoscope. 2014;124(1):301–5.PubMedCrossRefGoogle Scholar
  4. Ahmed S, Arjmand E, Sidell D. Role of obesity in otitis media in children. Curr Allergy Asthma Rep. 2014;14(11):469.PubMedCrossRefGoogle Scholar
  5. Ahmmed AU, Curley JW, Newton VE, Mukherjee D. Hearing aids versus ventilation tubes in persistent otitis media with effusion: a survey of clinical practice. J Laryngol Otol. 2001;115(4):274–9.PubMedCrossRefGoogle Scholar
  6. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.PubMedCrossRefGoogle Scholar
  7. Allen EK, Manichaikul A, Sale MM. Genetic contributors to otitis media: agnostic discovery approaches. Curr Allergy Asthma Rep. 2014;14(2):411.PubMedCrossRefGoogle Scholar
  8. Alles R, Parikh A, Hawk L, Darby Y, Romero JN, Scadding G. The prevalence of atopic disorders in children with chronic otitis media with effusion. Pediatr Allergy Immunol. 2001;12(2):102–6.PubMedCrossRefGoogle Scholar
  9. Ambrosio A, Brigger MT. Surgery for otitis media in a universal health care model: socioeconomic status and race/ethnicity effects. Otolaryngol Head Neck Surg. 2014;151(1):137–41.PubMedCrossRefGoogle Scholar
  10. Barenkamp SJ. Editorial commentary: respiratory viruses and otitis media in young children. Clin Infect Dis. 2014;60(1):10–1.PubMedCrossRefGoogle Scholar
  11. Bascelli LM, Losh DP. How does a “wait and see” approach to prescribing antibiotics for acute otitis media (AOM) compare with immediate antibiotic treatment? J Fam Pract. 2001;50(5):469.PubMedGoogle Scholar
  12. Bernstein JM. Biological mediators of inflammation in middle ear effusions. Ann Otol Rhinol Laryngol. 1976;85(2 Suppl 25 Pt 2):90–6.PubMedCrossRefGoogle Scholar
  13. Beutler B. Innate immunity: an overview. Mol Immunol. 2004;40(12):845–59.PubMedCrossRefGoogle Scholar
  14. Bierhaus A, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med. 2005;83(11):876–86.PubMedCrossRefGoogle Scholar
  15. Bluestone CD. Epidemiology and pathogenesis of chronic suppurative otitis media: implications for prevention and treatment. Int J Pediatr Otorhinolaryngol. 1998;42(3):207–23.PubMedCrossRefGoogle Scholar
  16. Bodmer D, Brors D, Pak K, Keithley EM, Mullen L, Ryan AF, Gloddek B. Inflammatory signals increase Fas ligand expression by inner ear cells. J Neuroimmunol. 2002;129(1–2):10–7.PubMedCrossRefGoogle Scholar
  17. Brodsky IE, Monack D. NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol. 2009;21(4):199–207.PubMedCrossRefGoogle Scholar
  18. Brodsky L, Faden H, Bernstein J, Stanievich J, DeCastro G, Volovitz B, Ogra PL. Arachidonic acid metabolites in middle ear effusions of children. Ann Otol Rhinol Laryngol. 1991;100(7):589–92.PubMedCrossRefGoogle Scholar
  19. Catanzaro A, Ryan A, Batcher S, Wasserman SI. The response to human rIL-1, rIL-2, and rTNF in the middle ear of guinea pigs. Laryngoscope. 1991;101(3):271–5.PubMedCrossRefGoogle Scholar
  20. Cripps AW, Otczyk DC. Prospects for a vaccine against otitis media. Expert Rev Vaccines. 2006;5(4):517–34.PubMedCrossRefGoogle Scholar
  21. Daly KA, Hunter LL, Giebink GS. Chronic otitis media with effusion. Pediatr Rev. 1999;20(3):85–93. quiz 4PubMedCrossRefGoogle Scholar
  22. Daly KA, Brown WM, Segade F, Bowden DW, Keats BJ, Lindgren BR, Levine SC, Rich SS. Chronic and recurrent otitis media: a genome scan for susceptibility loci. Am J Hum Genet. 2004;75(6):988–97.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol Life Sci. 2003;60(9):1793–804.PubMedCrossRefGoogle Scholar
  25. El Mezayen R, et al. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett. 2007;111(1):36–44.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Emonts M, Veenhoven RH, Wiertsema SP, Houwing-Duistermaat JJ, Walraven V, de Groot R, Hermans PW, Sanders EA. Genetic polymorphisms in immunoresponse genes TNFA, IL6, IL10, and TLR4 are associated with recurrent acute otitis media. Pediatrics. 2007;120(4):814–23.PubMedCrossRefGoogle Scholar
  27. Eskola J, Kilpi T, Palmu A, Jokinen J, Eerola M, Haapakoski J, Herva E, Takala A, et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med. 2001;344(6):403–9.PubMedCrossRefGoogle Scholar
  28. Faden H. The microbiologic and immunologic basis for recurrent otitis media in children. Eur J Pediatr. 2001;160(7):407–13.PubMedCrossRefGoogle Scholar
  29. Forgie S, Zhanel G, Robinson J. Management of acute otitis media. Paediatr Child Health. 2009;14(7):457–64.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Forsen TW. Chronic disorders of the middle ear and mastoid. In: Wetmore RF, Muntz HR, TJ MG, et al., editors. Pediatric otolaryngology: principles and practice pathways. Stuttgart, Germany: Thieme; 2000. p. 281–304.Google Scholar
  31. Friel-Patti S, Finitzo T. Language learning in a prospective study of otitis media with effusion in the first two years of life. J Speech Hear Res. 1990;33(1):188–94.PubMedCrossRefGoogle Scholar
  32. Friel-Patti S, Finitzo-Hieber T, Conti G, Brown KC. Language delay in infants associated with middle ear disease and mild, fluctuating hearing impairment. Pediatr Infect Dis. 1982;1(2):104–910.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fuchs JC, Linden JF, Baldini A, Tucker AS. A defect in early myogenesis causes otitis media in two mouse models of 22q11.2 deletion syndrome. Hum Mol Genet. 2014;24(7):1869–82.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Geijtenbeek TB, Gringhuis SI. Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol. 2009;9(7):465–79.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gervain J. Plasticity in early language acquisition: the effects of prenatal and early childhood experience. Curr Opin Neurobiol. 2015;35:13–20.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Goodwin JH, Post JC. The genetics of otitis media. Curr Allergy Asthma Rep. 2002;2(4):304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Granath A, Cardell LO, Uddman R, Harder H. Altered Toll- and Nod-like receptor expression in human middle ear mucosa from patients with chronic middle ear disease. J Infect. 2011;63(2):174–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Grievink EH, Peters SA, van Bon WH, Schilder AG. The effects of early bilateral otitis media with effusion on language ability: a prospective cohort study. J Speech Hear Res. 1993;36(5):1004–12.PubMedCrossRefGoogle Scholar
  39. Guan X, Gan RZ. Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs. Hear Res. 2011;277(1–2):96–106.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Haake SM, Dinh CT, Chen S, Eshraghi AA, Van De Water TR. Dexamethasone protects auditory hair cells against TNFalpha-initiated apoptosis via activation of PI3K/Akt and NFkappaB signaling. Hear Res. 2009;255(1–2):22–32.CrossRefPubMedGoogle Scholar
  41. Haapala S, Niemitalo-Haapola E, Raappana A, Kujala T, Suominen K, Kujala T, Jansson-Verkasalo E. Effects of recurrent acute otitis media on cortical speech-sound processing in 2-year old children. Ear Hear. 2014;35(3):e75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Han F, Yu H, Tian C, Li S, Jacobs MR, Benedict-Alderfer C, Zheng QY. Role for toll-like receptor 2 in the immune response to streptococcus pneumoniae infection in mouse otitis media. Infect Immun. 2009;77(7):3100–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. He Y, Scholes MA, Wiet GJ, Li Q, Clancy C, Tong HH. Complement activation in pediatric patients with recurrent acute otitis media. Int J Pediatr Otorhinolaryngol. 2013;77(6):911–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Heikkinen T, Chonmaitree T. Importance of respiratory viruses in acute otitis media. Clin Microbiol Rev. 2003;16(2):230–41.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hernandez M, Leichtle A, Pak K, Ebmeyer J, Euteneuer S, Obonyo M, Guiney DG, Webster NJ, Broide D, Ryan AF, Wasserman SI. Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis. 2008;198(12):1862–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hernandez M, Leichtle A, Pak K, Webster NJ, Wasserman SI, Ryan AF. The transcriptome of a complete episode of acute otitis media. BMC Genomics. 2015;16:259.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hirano T, Kodama S, Fujita K, Maeda K, Suzuki M. Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media. FEMS Immunol Med Microbiol. 2007;49(1):75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hirano T, Kodama S, Moriyama M, Kawano T, Suzuki M. The role of Toll-like receptor 4 in eliciting acquired immune responses against nontypeable Haemophilus influenzae following intranasal immunization with outer membrane protein. Int J Pediatr Otorhinolaryngol. 2009;73(12):1657–65.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Holm VA, Kunze LH. Effect of chronic otitis media on language and speech development. Pediatrics. 1969;43(5):833–9.PubMedPubMedCentralGoogle Scholar
  50. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36(4):561–71.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Johnson DL, McCormick DP, Baldwin CD. Early middle ear effusion and language at age seven. J Commun Disord. 2008;41(1):20–32.PubMedCrossRefGoogle Scholar
  52. Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, Sausen NJ, Jung TT, Kim BH, Park SY, Lin J, Ondrey FG, Mains DR, Huang T. The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol. 2008;1(3):117–38.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jung TT, Park SK, Rhee CK. Effect of inhibitors of leukotriene and/or platelet activating factor on killed H. influenzae induced experimental otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2004;68(1):57–63.PubMedCrossRefGoogle Scholar
  54. Kariya S, Okano M, Higaki T, Makihara S, Haruna T, Eguchi M, Nishizaki K. Neutralizing antibody against granulocyte/macrophage colony-stimulating factor inhibits inflammatory response in experimental otitis media. Laryngoscope. 2013;123(6):1514–8.PubMedCrossRefGoogle Scholar
  55. Kaur R, Casey J, Pichichero M. Cytokine, chemokine, and Toll-like receptor expression in middle ear fluids of children with acute otitis media. Laryngoscope. 2015;125(1):E39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317–37.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kawano T, Hirano T, Kodama S, Mitsui MT, Ahmed K, Nishizono A, Suzuki M. Pili play an important role in enhancing the bacterial clearance from the middle ear in a mouse model of acute otitis media with Moraxella catarrhalis. Pathog Dis. 2013;67(2):119–31.PubMedCrossRefGoogle Scholar
  58. Kim Y-G, Park J-H, Shaw MH, Franchi L, Inohara N, Nunez G. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity. 2008;28(2):246–57.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kim MG, Park DC, Shim JS, Jung H, Park MS, Kim YI, Lee JW, Yeo SG. TLR-9, NOD-1, NOD-2, RIG-I and immunoglobulins in recurrent otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2010;74(12):1425–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kim SH, Cha SH, Kim YI, Byun JY, Park MS, Yeo SG. Age-dependent changes in pattern recognition receptor and cytokine mRNA expression in children with otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2015;79(2):229–34.PubMedCrossRefGoogle Scholar
  61. Kubba H, Pearson JP, Birchall JP. The aetiology of otitis media with effusion: a review. Clin Otolaryngol Allied Sci. 2000;25(3):181–94.PubMedCrossRefGoogle Scholar
  62. Kurabi A, Lee J, Wong C, Pak K, Hoffman HM, Ryan AF, Wasserman SI. The inflammasome adaptor ASC contributes to multiple innate immune processes in the resolution of otitis media. Innate Immun. 2015;21(2):203–14.PubMedCrossRefGoogle Scholar
  63. Kurabi A, Pak K, Ryan AF, Wasserman SI. Innate immunity: orchestrating inflammation and resolution of otitis media. Curr Allergy Asthma Rep. 2016;16:6.PubMedCrossRefGoogle Scholar
  64. Kvaerner KJ, Tambs K, Harris JR, Magnus P. The relationship between otitis media and intrauterine growth: a co-twin control study. Int J Pediatr Otorhinolaryngol. 1996;37(3):217–25.PubMedCrossRefGoogle Scholar
  65. Lee DH, Yeo SW, Chang KH, Park SY, Oh JH, Seo JH. Effect of infliximab on experimentally induced otitis media in rats. Ann Otol Rhinol Laryngol. 2008;117(6):470–6.PubMedCrossRefGoogle Scholar
  66. Lee HY, Chung JH, Lee SK, Byun JY, Kim YI, Yeo SG. Toll-like receptors, cytokines & nitric oxide synthase in patients with otitis media with effusion. Indian J Med Res. 2013a;138(4):523–30.PubMedPubMedCentralGoogle Scholar
  67. Lee JH, Park DC, Oh IW, Kim YI, Kim JB, Yeo SG. C-type lectin receptors mRNA expression in patients with otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2013b;77(11):1846–51.PubMedCrossRefGoogle Scholar
  68. Leichtle A, Wasserman SI, Hernandez M, Pak K, Ryan A. TNF and MyD88 are critical to the clearance of nontypeable nontypable haemophilus influenzae (NTHi)-induced otitis media via inflammatory cell recruitment and phagocytosis. J Allergy Clin Immunol. 2008;121(2):S268–9.CrossRefGoogle Scholar
  69. Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng C-F, Webster NJ, Ryan AF, Wasserman SI. TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun. 2009a;15(4):205–15.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Leichtle A, Hernandez M, Pak K, Webster NJ, Wasserman SI, Ryan AF. The Toll-like receptor adaptor TRIF contributes to otitis media pathogenesis and recovery. BMC Immunol. 2009b;10:45.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Leichtle A, Hernandez M, Ebmeyer J, Yamasaki K, Lai Y, Radek K, Choung YH, Euteneuer S, Pak K, Gallo R, Wasserman SI, Ryan AF. CC chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of macrophages and hastens recovery from experimental otitis media in TNF−/− mice. J Immunol. 2010;184(6):3087–97.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Leichtle A, Hernandez M, Lee J, Pak K, Webster NJ, Wollenberg B, Wasserman SI, Ryan AF. The role of DNA sensing and innate immune receptor TLR9 in otitis media. Innate Immun. 2012;18(1):3–13.PubMedCrossRefGoogle Scholar
  73. Li Q, Li YX, Douthitt K, Stahl GL, Thurman JM, Tong HH. Role of the alternative and classical complement activation pathway in complement mediated killing against Streptococcus pneumoniae colony opacity variants during acute pneumococcal otitis media in mice. Microbes Infect. 2012;14(14):1308–18.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lim JH, Ha U, Sakai A, Woo CH, Kweon SM, Xu H, Li JD. Streptococcus pneumoniae synergizes with nontypeable Haemophilus influenzae to induce inflammation via upregulating TLR2. BMC Immunol. 2008;9:40.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liu K, Chen L, Kaur R, Pichichero ME. Transcriptome signature in young children with acute otitis media due to non-typeable Haemophilus influenzae. Int Immunol. 2013;25(6):353–61.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Luotonen M, Uhari M, Aitola L, Lukkaroinen AM, Luotonen J, Uhari M, Korkeamäki RL. Recurrent otitis media during infancy and linguistic skills at the age of nine years. Pediatr Infect Dis J. 1996;15(10):854–8.PubMedCrossRefGoogle Scholar
  77. Lupfer C, Kanneganti TD. The expanding role of NLRs in antiviral immunity. Immunol Rev. 2013;255(1):13–24.PubMedPubMedCentralCrossRefGoogle Scholar
  78. MacIntyre EA, Karr CJ, Koehoorn M, et al. Otitis media incidence and risk factors in a population-based birth cohort. Paediatr Child Health. 2010;15(7):437–42.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000;343(5):338–44.PubMedCrossRefGoogle Scholar
  80. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335:936–41.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Melhus A, Ryan AF. Expression of cytokine genes during pneumococcal and nontypeable Haemophilus influenzae acute otitis media in the rat. Infect Immun. 2000;68(7):4024–31.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Minovi A, Dazert S. Diseases of the middle ear in childhood. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2014;13:Doc11.Google Scholar
  83. Mittal R, Lisi CV, Gerring R, Mittal J, Mathee K, Narasimhan G, Azad RK, Yao Q, Grati M, Yan D, Eshraghi AA, Angeli SI, Telischi FF, Liu XZ. Current concepts in the pathogenesis and treatment of chronic suppurative otitis media. J Med Microbiol. 2015;64(10):1103–16.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Miyata M, Lee J-Y, Susuki-Miyata S, Wang WY, Xu H, Kai H, Kobayashi KS, Flavell RA, Li JD. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Pletz MW, Maus U, Krug N, Welte T, Lode H. Pneumococcal vaccines: mechanism of action, impact on epidemiology and adaption of the species. Int J Antimicrob Agents. 2008;32(3):199–206.PubMedCrossRefGoogle Scholar
  87. Post JC. Genetics of otitis media. Adv Otorhinolaryngol. 2011;70:135–40.PubMedGoogle Scholar
  88. Qureishi A, Lee Y, Belfield K, Birchall JP, Daniel M. Update on otitis media - prevention and treatment. Infect Drug Resist. 2014;7:15–24.PubMedPubMedCentralGoogle Scholar
  89. Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333–42.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Roberts JE, Rosenfeld RM, Zeisel SA. Otitis media and speech and language: a meta-analysis of prospective studies. Pediatrics. 2004;113(3 Pt 1):e238–48.PubMedCrossRefGoogle Scholar
  91. Rosenfeld RM, Schwartz SR, Pynnonen MA, Tunkel DE, Hussey HM, Fichera JS, Grimes AM, et al. Clinical practice guideline: Tympanostomy tubes in children. Otolaryngol Head Neck Surg. 2013;149(1 Suppl):S1–35.PubMedGoogle Scholar
  92. Rvachew S, Slawinski EB, Williams M, Green CL. The impact of early onset otitis media on babbling and early language development. J Acoust Soc Am. 1999;105(1):467–75.PubMedCrossRefGoogle Scholar
  93. Ryan AF, Catanzaro A, Wasserman SI, Harris JP, Vogel CW. The effect of complement depletion on immunologically mediated middle ear effusion and inflammation. Clin Immunol Immunopathol. 1986;40(3):410–21.PubMedCrossRefGoogle Scholar
  94. Ryan R, Harkness P, Fowler S, Topham J. Management of paediatric otitis media with effusion in the UK: a survey conducted with the guidance of the Clinical Effectiveness Unit at the Royal College of Surgeons of England. J Laryngol Otol. 2001;115(6):475–8.PubMedCrossRefGoogle Scholar
  95. Rye MS, Bhutta MF, Cheeseman MT, Burgner D, Blackwell JM, Brown SD, Jamieson SE. Unraveling the genetics of otitis media: from mouse to human and back again. Mamm Genome. 2011;22(1–2):66–82.PubMedCrossRefGoogle Scholar
  96. Rye MS, Blackwell JM, Jamieson SE. Genetic susceptibility to otitis media in childhood. Laryngoscope. 2012;122(3):665–75.PubMedCrossRefGoogle Scholar
  97. Sabirov A, Metzger DW. Mouse models for the study of mucosal vaccination against otitis media. Vaccine. 2006;26(12):1501–24.CrossRefGoogle Scholar
  98. Sharma SK, Pichichero ME. Cellular immune response in young children accounts for recurrent acute otitis media. Curr Allergy Asthma Rep. 2013;13(5):495–500.PubMedCrossRefGoogle Scholar
  99. Shuto T, Xu H, Wang B, Han J, Kai H, Gu XX, Murphy TF, Lim DJ, Li JD. Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha/beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A. 2001;98(15):8774–9.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Si Y, Zhang ZG, Chen SJ, Zheng YQ, Chen YB, Liu Y, Jiang H, Feng LQ, Huang X. Attenuated TLRs in middle ear mucosa contributes to susceptibility of chronic suppurative otitis media. Hum Immunol. 2014;75(8):771–6.PubMedCrossRefGoogle Scholar
  101. Smirnova MG, Kiselev SL, Gnuchev NV, Birchall JP, Pearson JP. Role of the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 and interleukin-8 in the pathogenesis of the otitis media with effusion. Eur Cytokine Netw. 2002;13(2):161–72.PubMedGoogle Scholar
  102. Stangerup SE, Tos M, Arnesen R, Larsen P. A cohort study of point prevalence of eardrum pathology in children and teenagers from age 5 to age 16. Eur Arch Otorhinolaryngol. 1994;251(7):399–403.PubMedCrossRefGoogle Scholar
  103. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.PubMedCrossRefGoogle Scholar
  104. Taylor S, Marchisio P, Vergison A, Harriague J, Hausdorff WP, Haggard M. Impact of pneumococcal conjugate vaccination on otitis media: a systematic review. Clin Infect Dis. 2012;54(12):1765–73.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Teele DW, Klein JO, Rosner B. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis. 1989;160(1):83–94.PubMedCrossRefGoogle Scholar
  106. Thomas NM, Brook I. Otitis media: an update on current pharmacotherapy and future perspectives. Expert Opin Pharmacother. 2014;15(8):1069–83.PubMedCrossRefGoogle Scholar
  107. Thornton JL, Chevallier KM, Koka K, Gabbard SA, Tollin DJ. Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement. J Assoc Res Otolaryngol. 2013;14(4):451–64.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Trune DR, Kempton B, Hausman FA, Larrain BE, MacArthur CJ. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media. Hear Res. 2015;326:49–58.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tsuchiya K, Komori M, Zheng QY, Ferrieri P, Lin J. Interleukin 10 is an essential modulator of mucoid metaplasia in a mouse otitis media model. Ann Otol Rhinol Laryngol. 2008;117(8):630–6.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Venekamp RP, Sanders SL, Glasziou PP, Del Mar CB, Rovers MM (2015) Antibiotics for acute otitis media in children. Cochrane Database Syst Rev 23(6):CD000219.Google Scholar
  111. Vergison A. Microbiology of otitis media: a moving target. Vaccine. 2008;26(Suppl 7):G5–10.PubMedCrossRefGoogle Scholar
  112. Villa PC, Zanchetta S. Auditory temporal abilities in children with history of recurrent otitis media in the first years of life and persistent in preschool and school ages. Codas. 2014;26(6):494–502.PubMedCrossRefGoogle Scholar
  113. Watanabe T, Hirano T, Suzuki M, Kurono Y, Mogi G. Role of interleukin-1beta in a murine model of otitis media with effusion. Ann Otol Rhinol Laryngol. 2001;110(6):574–80.PubMedCrossRefGoogle Scholar
  114. Weber B, Schuster S, Zysset D, Rihs S, Dickgreber N, Schürch C, Riether C, Siegrist M, Schneider C, Pawelski H, Gurzeler U, Ziltener P, Genitsch V, Tacchini-Cottier F, Ochsenbein A, Hofstetter W, Kopf M, Kaufmann T, Oxenius A, Reith W, Saurer L, Mueller C. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog. 2014;10(1):e1003900.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Winskel H. The effects of an early history of otitis media on children’s language and literacy skill development. Br J Educ Psychol. 2006;76(Pt 4):727–44.PubMedCrossRefGoogle Scholar
  116. Woo JI, Oh S, Webster P, Lee YJ, Lim DJ, Moon SK. NOD2/RICK-dependent beta-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection. PLoS One. 2014;9(3):e90933.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yamasaki S, et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9(10):1179–88.PubMedCrossRefGoogle Scholar
  118. Yao W, Frie M, Pan J, Pak K, Webster N, Wasserman SI, Ryan AF. C-Jun N-terminal kinase (JNK) isoforms play differing roles in otitis media. BMC Immunol. 2014;15:46.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yellon RF, Leonard G, Marucha PT, Craven R, Carpenter RJ, Lehmann WB, Burleson JA, Kreutzer DL. Characterization of cytokines present in middle ear effusions. Laryngoscope. 1991;101(2):165–9.PubMedCrossRefGoogle Scholar
  120. Zumach A, Gerrits E, Chenault M, Anteunis L. Long-term effects of early-life otitis media on language development. J Speech Lang Hear Res. 2010;53(1):34–43.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Arwa Kurabi
    • 1
    • 2
  • Daniel Schaerer
    • 1
  • Allen F. Ryan
    • 1
    • 2
    • 3
  1. 1.Division of Otolaryngology, Department of SurgeryUniversity of California San DiegoLa JollaUSA
  2. 2.Veterans Administration San Diego Healthcare SystemSan DiegoUSA
  3. 3.Department of NeurosciencesUniversity of California San DiegoLa JollaUSA

Personalised recommendations