State and Context in Vocal Communication of Rodents

  • Laura M. HurleyEmail author
  • Matina C. Kalcounis-Rueppell
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 67)


Context adds meaning to vocal communication. For an individual that is encountering conspecifics, sensitivity to factors such as the identity of a social partner and presence of eavesdroppers (the external scene) or reproductive state and experience (the internal scene) may be essential for effective communication. Although the external and internal scenes are often categorized as separate, they are functionally entangled because they often interact to influence communication and they converge at the physiological level. The external and internal scenes have well-documented effects on both vocal production by signalers and the responses to vocal signals by receivers. This commonality supports a view of context as an emergent phenomenon with individuals acting as both senders and receivers during a communication event and contributing to the tone of the interaction via feedback to social partners. Amid this complexity, an operational view defines context as the set of factors that influences communication within a given interaction. This definition can be used as a simplifying tool for exploring both the functions and mechanisms of context sensitivity. Since both the external and internal scenes affect physiological systems involved in the internal representations of qualities such as stress, reward, and positive or negative valence, an integrated concept of context also unites ecological and biomedical perspectives.


Abiotic Behavioral context Biotic Environment Individual experience Internal state Signal receiver Signal sender Social physiology Ultrasonic Vocalization 



The work described here that was completed in the authors’ laboratories was supported by the National Institute on Deafness and Other Communication Disorders award R01DC008963 and National Science Foundation awards 1460949 and 1456298 (Hurley lab) and National Science Foundation grants IOS-1132419, IOS-1355163, and IOS-0641530 (Kalcounis-Rueppell Lab). M. C. Kalcounis-Rueppell acknowledges her collaborator and co-PI on IOS-1355163 and IOS-1132419, Cathy Marler, for important discussions in developing her thoughts and ideas on contexts and USVs. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors wish to thank Drs. Jasmine Grimsley, Daniel Blumstein, Sophie von Merten, and Akari Asaba for generously sharing data for particular illustrations.

Compliance with Ethics Requirements

Laura Hurley declares that she has no conflicts of interest.

Matina Kalcounis-Rueppell declares that she has no conflicts of interest.


  1. Asaba, A., Okabe, S., Nagasawa, M., Kato, M., et al. (2014a). Developmental social environment imprints female preference for male song in mice. PLoS One, 9, e87186. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asaba, A., Hattori, T., Mogi, K., & Kikusui, T. (2014b). Sexual attractiveness of male chemicals and vocalizations in mice. Frontiers in Neuroscience, 8, 231. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartolomé, M. V., & Gil-Loyzaga, P. (2005). Serotonergic innervation of the inner ear: Is it involved in the general physiological control of the auditory receptor? International Tinnitus Journal, 11, 119–125.PubMedGoogle Scholar
  4. Bauer, E. E., Klug, A., & Pollak, G. D. (2002). Spectral determination of responses to species-specific calls in the dorsal nucleus of the lateral lemniscus. Journal of Neurophysiology, 88, 1955–1967.CrossRefPubMedGoogle Scholar
  5. Bedford, N. L., & Hoekstra, H. E. (2015). Peromyscus mice as a model for studying natural variation. Elife 4, e06813. CrossRefPubMedCentralGoogle Scholar
  6. Blumberg, M. S., Efimova, I. V., & Alberts, J. R. (1992). Ultrasonic vocalizations by rat pups: The primary importance of ambient temperature and the thermal significance of contact comfort. Developmental Psychobiology, 25, 229–250. CrossRefPubMedGoogle Scholar
  7. Blumstein, D. T., & Chi, Y. Y. (2012). Scared and less noisy: Glucocorticoids are associated with alarm call entropy. Biological Letters, 8, 189–192. CrossRefGoogle Scholar
  8. Blumstein, D. T., & Récapet, C. (2009). The sound of arousal: The addition of novel non-linearities increases responsiveness in marmot alarm calls. Ethology, 115, 1074–1081. CrossRefGoogle Scholar
  9. Blumstein, D. T., Verneyre, L., & Daniel, J. C. (2004). Reliability and the adaptive utility of discrimination among alarm callers. Proceedings of the Royal Society B: Biological Sciences, 271, 1851–1857. CrossRefPubMedGoogle Scholar
  10. Blumstein, D. T., Richardson, D. T., Cooley, L., Winternitz, J., & Daniel, J. C. (2008). The structure, meaning and function of yellow-bellied marmot pup screams. Animal Behaviour, 76, 1055–1064. CrossRefGoogle Scholar
  11. Blumstein, D. T., Nguyen, K. T., & Martin, J. G. (2013). Ontogenetic variation of heritability and maternal effects in yellow-bellied marmot alarm calls. Proceedings of the Royal Society B: Biological Sciences, 280, 20130176. CrossRefPubMedGoogle Scholar
  12. Börner, A., Hjemdahl, R., Götz, T., & Brown, G. R. (2016). Ultrasonic vocalizations of female Norway rats (Rattus norvegicus) in response to social partners. Journal of Comparative Psychology, 130, 76–80. CrossRefPubMedGoogle Scholar
  13. Bottjer, S. W., & Arnold, A. P. (1997). Developmental plasticity in neural circuits for a learned behavior. Annual Review of Neuroscience, 20, 459–481. CrossRefPubMedGoogle Scholar
  14. Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: The MIT Press.Google Scholar
  15. Briggs, J. R., & Kalcounis-Rueppell, M. C. (2011). Similar acoustic structure and behavioural context of vocalizations produced by male and female California mice in the wild. Animal Behaviour, 82, 1263–1273. CrossRefGoogle Scholar
  16. Brunelli, S. A., Shair, H. N., & Hofer, M. A. (1994). Hypothermic vocalizations of rat pups (Rattus norvegicus) elicit and direct maternal search behavior. Journal of Comparative Psychology, 108, 298–303.CrossRefPubMedGoogle Scholar
  17. Brunelli, S. A., Masmela, J. R., Shair, H. N., & Hofer, M. A. (1998). Effects of biparental rearing on ultrasonic vocalization (USV) responses of rat pups (Rattus norvegicus). Journal of Comparative Psychology, 112, 331–343.CrossRefPubMedGoogle Scholar
  18. Campbell, P., Pasch, B., Pino, J. L., Crino, O. L., et al. (2010). Geographic variation in the songs of neotropical singing mice: Testing the relative importance of drift and local adaptation. Evolution, 64, 1955–1972. CrossRefPubMedGoogle Scholar
  19. Carazo, P., & Font, E. (2010). Putting information back into biological communication. Journal of Evolutionary Biology, 23, 661–669. CrossRefPubMedGoogle Scholar
  20. Castelino, C. B., & Schmidt, M. F. (2010). What birdsong can teach us about the central noradrenergic system. Journal of Chemical Neuroanatomy, 39, 96–111. CrossRefPubMedGoogle Scholar
  21. Chabout, J., Sarkar, A., Dunson, D. B., & Jarvis, E. D. (2015). Male mice song syntax depends on social contexts and influences female preferences. Frontiers in Behavioral Neuroscience, 9. Artn 76
  22. Chen, Y., Clark, O., & Woolley, S. C. (2017). Courtship song preferences in female zebra finches are shaped by developmental auditory experience. Proceedings of the Royal Society B: Biological Sciences, 284(1855), 20170054. CrossRefPubMedGoogle Scholar
  23. Cousillas, H., George, I., Mathelier, M., Richard, J.-P., et al. (2006). Social experience influences the development of a central auditory area. Naturwissenschaften, 93, 588–596. CrossRefPubMedGoogle Scholar
  24. Curley, J. P., & Champagne, F. A. (2016). Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Frontiers in Neuroendocrinology, 40, 52–66. CrossRefPubMedGoogle Scholar
  25. Day, D. E., Mintz, E. M., & Bartness, T. J. (2002). Diet choice exaggerates food hoarding, intake and pup survival across reproduction. Physiology and Behavior, 75, 143–157.CrossRefPubMedGoogle Scholar
  26. de Kloet, C. S., Vermetten, E., Geuze, E., Kavelaars, A., et al. (2006). Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. Journal of Psychiatric Research, 40, 550–567. CrossRefPubMedGoogle Scholar
  27. Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35, 125–129.CrossRefGoogle Scholar
  28. Ehret, G. (2005). Infant rodent ultrasounds—a gate to the understanding of sound communication. Behavioral Genetics, 35, 19–29. CrossRefGoogle Scholar
  29. Ehret, G., & Bernecker, C. (1986). Low-frequency sound communication by mouse pups (Mus musculus): Wriggling calls release maternal behavior. Animal Behaviour, 34, 821–830. CrossRefGoogle Scholar
  30. Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68, 208–209.CrossRefPubMedGoogle Scholar
  31. Ehret, G., & Koch, M. (1989). Ultrasound-induced parental behavior in house mice is controlled by female sex hormones and parental experience. Ethology, 80, 81–93.CrossRefGoogle Scholar
  32. Ehret, G., & Schmid, C. (2009). Reproductive cycle-dependent plasticity of perception of acoustic meaning in mice. Physiology and Behavior, 96, 428–433. CrossRefPubMedGoogle Scholar
  33. Ehret, G., Koch, M., Haack, B., & Markl, H. (1987). Sex and parental experience determine the onset of an instinctive behavior in mice. Naturwissenschaften, 74, 47.CrossRefPubMedGoogle Scholar
  34. Fernández-Vargas, M., & Johnston, R. E. (2015). Ultrasonic vocalizations in golden hamsters (Mesocricetus auratus) reveal modest sex differences and nonlinear signals of sexual motivation. PLoS One, 10, e0116789. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Finton, C. J., Keesom, S. M., Hood, K. E., & Hurley, L. M. (2017). What’s in a squeak? Female vocal signals predict the sexual behaviour of male house mice during courtship. Animal Behaviour, 126, 163–175.CrossRefGoogle Scholar
  36. Floody, O. R., & Bauer, G. B. (1987). Selectivity in the responses of hamsters to conspecific vocalizations. Hormones and Behavior, 21, 522–527.CrossRefPubMedGoogle Scholar
  37. Floody, O. R., Walsh, C., & Flanagan, M. T. (1979). Testosterone stimulates ultrasound production by male hamsters. Hormones and Behavior, 12, 164–171.CrossRefPubMedGoogle Scholar
  38. Freeberg, T. M., Dunbar, R. I. M., & Ord, T. J. (2012). Social complexity as a proximate and ultimate factor in communicative complexity. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1785–1801. CrossRefGoogle Scholar
  39. Furrer, R. D., & Manser, M. B. (2009). The evolution of urgency-based and functionally referential alarm calls in ground-dwelling species. American Naturalist, 173, 400–410. CrossRefPubMedGoogle Scholar
  40. Gadziola, M. A., Shanbhag, S. J., & Wenstrup, J. J. (2016). Two distinct representations of social vocalizations in the basolateral amygdala. Journal of Neurophysiology, 115, 868–886. CrossRefPubMedGoogle Scholar
  41. Gaub, S., & Ehret, G. (2005). Grouping in auditory temporal perception and vocal production is mutually adapted: The case of wriggling calls of mice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191, 1131–1135. CrossRefPubMedGoogle Scholar
  42. Geissler, D. B., Schmidt, H. S., & Ehret, G. (2013). Limbic brain activation for maternal acoustic perception and responding is different in mothers and virgin female mice. Journal of Physiology-Paris, 107, 62–71. CrossRefGoogle Scholar
  43. Gittelman, J. X., Perkel, D. J., & Portfors, C. V. (2013). Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. Journal of the Association for Research in Otolaryngology, 14, 719–729. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Grimsley, J. M., Monaghan, J. J., & Wenstrup, J. J. (2011). Development of social vocalizations in mice. PLoS One, 6, e17460. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Grimsley, J. M. S., Hazlett, E. G., & Wenstrup, J. J. (2013). Coding the meaning of sounds: Contextual modulation of auditory responses in the basolateral amygdala. Journal of Neuroscience, 33, 17538–17548. CrossRefPubMedGoogle Scholar
  46. Hahn, M. E., & Lavooy, M. J. (2005). A review of the methods of studies on infant ultrasound production and maternal retrieval in small rodents. Behavioral Genetics, 35, 31–52. CrossRefGoogle Scholar
  47. Halfwerk, W., Jones, P. L., Taylor, R. C., Ryan, M. J., & Page, R. A. (2014). Risky ripples allow bats and frogs to eavesdrop on a multisensory sexual display. Science, 343, 413–416. CrossRefPubMedGoogle Scholar
  48. Hall, I. C., Sell, G. L., & Hurley, L. M. (2011). Social regulation of serotonin in the auditory midbrain. Behavioral Neuroscience, 125, 501–511. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., & Fischer, J. (2009). Female mice respond to male ultrasonic 'songs' with approach behaviour. Biological Letters, 5, 589–592. CrossRefGoogle Scholar
  50. Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., & Fischer, J. (2012). The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS One, 7, e41133. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hanson, J. L., & Hurley, L. M. (2012). Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS One, 7(7), e40782.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hanson, J. L., & Hurley, L. M. (2014). Context-dependent fluctuation of serotonin in the auditory midbrain: The influence of sex, reproductive state and experience. Journal of Experimental Biology, 217, 526–535. CrossRefPubMedGoogle Scholar
  53. Hanson, J. L., & Hurley, L. M. (2016). Serotonin, estrus, and social context influence c-Fos immunoreactivity in the inferior colliculus. Behavioral Neuroscience, 130, 600–613. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Harris, B. N., & Saltzman, W. (2013). Effect of reproductive status on hypothalamic-pituitary-adrenal (HPA) activity and reactivity in male California mice (Peromyscus californicus). Physiology and Behavior, 112, 70–76. CrossRefPubMedGoogle Scholar
  55. Hayashi, S., & Kimura, T. (1974). Sex-attractant emitted by female mice. Physiology and Behavior, 13, 563–567.CrossRefPubMedGoogle Scholar
  56. Hennessy, M. B., Miller, E. E., & Shair, H. N. (2006). Brief exposure to the biological mother "potentiates" the isolation behavior of precocial Guinea pig pups. Developmental Psychobiology, 48, 653–659. CrossRefPubMedGoogle Scholar
  57. Hofer, M. A., Brunelli, S. A., Masmela, J., & Shair, H. N. (1996). Maternal interactions prior to separation potentiate isolation-induced calling in rat pups. Behavioral Neuroscience, 110, 1158–1167.CrossRefPubMedGoogle Scholar
  58. Hoffmann, F., Musolf, K., & Penn, D. J. (2012). Spectrographic analyses reveal signals of individuality and kinship in the ultrasonic courtship vocalizations of wild house mice. Physiology and Behavior, 105, 766–771. CrossRefPubMedGoogle Scholar
  59. Hoier, S., Pfeifle, C., von Merten, S., & Linnenbrink, M. (2016). Communication at the garden fence: Context dependent vocalization in female house mice. PLoS One, 11(3), e0152255. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Holy, T. E., & Guo, Z. S. (2005). Ultrasonic songs of male mice. Plos Biology, 3, 2177–2186. CrossRefGoogle Scholar
  61. Hurley, L. M., & Pollak, G. D. (2005). Serotonin modulates responses to species-specific vocalizations in the inferior colliculus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191, 535–546. CrossRefPubMedGoogle Scholar
  62. Jacob, P. F., & Hedwig, B. (2015). Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer). Journal of Neurophysiology, 114, 2649–2660. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Johansen, J. A., Clemens, L. G., & Nunez, A. A. (2008). Characterization of copulatory behavior in female mice: Evidence for paced mating. Physiology and Behavior, 95, 425–429. CrossRefPubMedGoogle Scholar
  64. Kalcounis-Rueppell, M. C., Petric, R., Briggs, J. R., Carney, C., et al. (2010). Differences in ultrasonic vocalizations between wild and laboratory California mice (Peromyscus californicus). PLoS One, 5, e970510. CrossRefGoogle Scholar
  65. Kapusta, J., Marchlewskakoj, A., & Sales, G. D. (1995). Home bedding modifies ultrasonic vocalization of infant bank voles. Journal of Chemical Ecology, 21, 577–582. CrossRefPubMedGoogle Scholar
  66. Keesom, S. M., & Hurley, L. M. (2016). Socially induced serotonergic fluctuations in the male auditory midbrain correlate with female behavior during courtship. Journal of Neurophysiology, 115, 1786–1796. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Keesom, S. M., Rendon, N. M., Demas, G. E., & Hurley, L. M. (2015). Vocal behaviour during aggressive encounters between Siberian hamsters, Phodopus sungorus. Animal Behaviour, 102, 85–93. CrossRefGoogle Scholar
  68. Kiriazis, J., & Slobodchikoff, C. N. (2006). Perceptual specificity in the alarm calls of Gunnison's prairie dogs. Behavioral Processes, 73, 29–35. CrossRefGoogle Scholar
  69. Koch, M., & Ehret, G. (1989). Estradiol and parental experience, but not prolactin are necessary for ultrasound recognition and pup-retrieving in the mouse. Physiology and Behavior, 45, 771–776.CrossRefPubMedGoogle Scholar
  70. Lee, S. B., Lee, H. S., & Waterhouse, B. D. (2008). The collateral projection from the dorsal raphe nucleus to whisker-related, trigeminal sensory and facial motor systems in the rat. Brain Research, 1214, 11–22. CrossRefPubMedGoogle Scholar
  71. Lepri, J. J., Theodorides, M., & Wysocki, C. J. (1988). Ultrasonic vocalizations by adult prairie voles, Microtus ochrogaster. Experientia, 44, 271–273.CrossRefPubMedGoogle Scholar
  72. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., & Pitts, W. H. (1968). What the frog's eye tells the frog's brain. In W. C. Corning & M. Balaban (Eds.), The mind: Biological approaches to its functions (pp. 233–258). New York: Interscience Publishers.Google Scholar
  73. Lin, F. G., Galindo-Leon, E. E., Ivanova, T. N., Mappus, R. C., & Liu, R. C. (2013). A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls. Neuroscience, 247, 102–116. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Liu, R. C., & Schreiner, C. E. (2007). Auditory cortical detection and discrimination correlates with communicative significance. PloS Biology, 5, e173. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Liu, R. C., Miller, K. D., Merzenich, M. M., & Schreiner, C. E. (2003). Acoustic variability and distinguishability among mouse ultrasound vocalizations. The Journal of the Acoustical Society of America, 114, 3412–3422. CrossRefPubMedGoogle Scholar
  76. Liu, R. C., Linden, J. F., & Schreiner, C. E. (2006). Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. European Journal of Neuroscience, 23, 3087–3097. CrossRefPubMedGoogle Scholar
  77. Lupanova, A. S., & Egorova, M. A. (2015). [Translation: Vocalizations of sex partners in the house mouse (Mus musculus)]. Zhurnal Evoliutsionnoi Biokhimii I Fiziologii, 51, 283–289.PubMedGoogle Scholar
  78. Maggio, J. C., Maggio, J. H., & Whitney, G. (1983). Experience-based vocalization of male mice to female chemosignals. Physiology and Behavior, 31, 269–272. CrossRefPubMedGoogle Scholar
  79. Maney, D. L. (2013). The incentive salience of courtship vocalizations: Hormone-mediated 'wanting' in the auditory system. Hearing Research, 305, 19–30. CrossRefPubMedGoogle Scholar
  80. Marlin, B. J., & Froemke, R. C. (2016). Oxytocin modulation of neural circuits for social behavior. Developmental Neurobiology, 77, 169–189. CrossRefPubMedGoogle Scholar
  81. Marlin, B. J., Mitre, M., D'amour, J. A., Chao, M. V., & Froemke, R. C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 520, 499–504. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Mateo, J. M. (2010). Alarm calls elicit predator-specific physiological responses. Biological Letters, 6, 623–625. CrossRefGoogle Scholar
  83. Matrosova, V. A., Blumstein, D. T., Volodin, I. A., & Volodina, E. V. (2011). The potential to encode sex, age, and individual identity in the alarm calls of three species of Marmotinae. Naturwissenschaften, 98, 181–192. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Mazurek, B., Haupt, H., Joachim, R., Klapp, B. F., et al. (2010). Stress induces transient auditory hypersensitivity in rats. Hearing Research, 259, 55–63. CrossRefPubMedGoogle Scholar
  85. Meltser, I., & Canlon, B. (2011). Protecting the auditory system with glucocorticoids. Hearing Research, 281, 47–55. CrossRefPubMedGoogle Scholar
  86. Miranda, J. A., & Liu, R. C. (2009). Dissecting natural sensory plasticity: Hormones and experience in a maternal context. Hearing Research, 252, 21–28. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Miranda, J. A., Shepard, K. N., McClintock, S. K., & Liu, R. C. (2014). Adult plasticity in the subcortical auditory pathway of the maternal mouse. PLoS One, 9, e101630. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Moreno-Gómez, F. N., León, A., Velásquez, N. A., Penna, M., & Delano, P. H. (2015). Individual and sex distinctiveness in bark calls of domestic chinchillas elicited in a distress context. The Journal of the Acoustical Society of America, 138, 1614–1622. CrossRefPubMedGoogle Scholar
  89. Motomura, N., Shimizu, K., Shimizu, M., Aoki-Komori, S., et al. (2002). A comparative study of isolation-induced ultrasonic vocalization in rodent pups. Experimental Animals, 51, 187–190. CrossRefPubMedGoogle Scholar
  90. Musolf, K., Hoffmann, F., & Penn, D. J. (2010). Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Animal Behaviour, 79, 757–764. CrossRefGoogle Scholar
  91. Musolf, K., Meindl, S., Larsen, A. L., Kalcounis-Rueppell, M. C., & Penn, D. J. (2015). Ultrasonic vocalizations of male mice differ among species and females show assortative preferences for male calls. PLoS One, 10, e0134123. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Neilans, E. G., Holfoth, D. P., Radziwon, K. E., Portfors, C. V., & Dent, M. L. (2014). Discrimination of ultrasonic vocalizations by CBA/CaJ mice (Mus musculus) is related to spectrotemporal dissimilarity of vocalizations. PLoS One, 9, e85405. CrossRefPubMedPubMedCentralGoogle Scholar
  93. Neunuebel, J. P., Taylor, A. L., Arthur, B. J., & Egnor, S. E. R. (2015). Female mice ultrasonically interact with males during courtship displays. Elife, 4. ARTN e06203
  94. Nevue, A. A., Felix, R. A., 2nd, & Portfors, C. V. (2016). Dopaminergic projections of the subparafascicular thalamic nucleus to the auditory brainstem. Hearing Research, 341, 202–209.
  95. Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Annals of the New York Academy of Sciences, 877, 242–257.CrossRefPubMedGoogle Scholar
  96. Nieh, E. H., Kim, S. Y., Namburi, P., & Tye, K. M. (2013). Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Research, 1511, 73–92. CrossRefPubMedGoogle Scholar
  97. Nunez, A. A., & Tan, D. T. (1984). Courtship ultrasonic vocalizations in male Swiss-Webster mice: Effects of hormones and sexual experience. Physiology and Behavior, 32, 717–721. CrossRefPubMedGoogle Scholar
  98. Nyby, J., Wysocki, C. J., Whitney, G., & Dizinno, G. (1977). Pheromonal regulation of male mouse ultrasonic courtship (Mus musculus). Animal Behaviour, 25, 333–341.CrossRefPubMedGoogle Scholar
  99. Oberweger, K., & Goller, F. (2001). The metabolic cost of birdsong production. Journal of Experimental Biology, 204, 3379–3388.PubMedGoogle Scholar
  100. Okabe, S., Nagasawa, M., Kihara, T., Kato, M., et al. (2013). Pup odor and ultrasonic vocalizations synergistically stimulate maternal attention in mice. Behavioral Neuroscience, 127, 432–438. CrossRefPubMedGoogle Scholar
  101. Parhar, I. S., Ogawa, S., & Ubuka, T. (2016). Reproductive neuroendocrine pathways of social behavior. Frontiers in Endocrinology, 7, 28. CrossRefPubMedPubMedCentralGoogle Scholar
  102. Pasch, B., George, A. S., Hamlin, H. J., Guillette, L. J., & Phelps, S. M. (2011). Androgens modulate song effort and aggression in Neotropical singing mice. Hormones and Behavior, 59, 90–97. CrossRefPubMedGoogle Scholar
  103. Pasch, B., Bolker, B. M., & Phelps, S. M. (2013). Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. American Naturalist, 182(5), E161-E173. CrossRefPubMedGoogle Scholar
  104. Penn, D., & Potts, W. (1998). MHC-disassortative mating preferences reversed by cross-fostering. Proceedings of the Royal Society B: Biological Sciences, 265, 1299–1306.CrossRefPubMedGoogle Scholar
  105. Petersen, C. L., & Hurley, L. M. (2017). Putting it in context: Linking auditory processing with social behavior circuits in the vertebrate brain. Integrative and Comparative Biology, 57, 865–877.CrossRefPubMedGoogle Scholar
  106. Petric, R., & Kalcounis-Rueppell, M. C. (2013). Female and male adult brush mice (Peromyscus boylii) use ultrasonic vocalizations in the wild. Behaviour, 150, 1747–1766. CrossRefGoogle Scholar
  107. Pollard, K. A., & Blumstein, D. T. (2012). Evolving communicative complexity: Insights from rodents and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1869–1878. CrossRefGoogle Scholar
  108. Pomerantz, S. M., Nunez, A. A., & Bean, N. J. (1983a). Female behavior is affected by male ultrasonic vocalizations in house mice. Physiology and Behavior, 31, 91–96. CrossRefPubMedGoogle Scholar
  109. Pomerantz, S. M., Fox, E., & Clemens, L. G. (1983b). Gonadal hormone activation of male courtship ultrasonic vocalizations and male copulatory behavior in castrated male deer mice (Peromyscus maniculatus bairdi). Behavioral Neuroscience, 97, 462–469. CrossRefPubMedGoogle Scholar
  110. Poremba, A., Bigelow, J., & Rossi, B. (2013). Processing of communication sounds: Contributions of learning, memory, and experience. Hearing Research, 305, 31–44. CrossRefPubMedPubMedCentralGoogle Scholar
  111. Pultorak, J. D., Fuxjager, M. J., Kalcounis-Rueppell, M. C., & Marler, C. A. (2015). Male fidelity expressed through rapid testosterone suppression of ultrasonic vocalizations to novel females in the monogamous California mouse. Hormones and Behavior, 70, 47–56. CrossRefPubMedGoogle Scholar
  112. Rendall, D., Owren, M. J., & Ryan, M. J. (2009). What do animal signals mean? Animal Behaviour, 78, 233–240. CrossRefGoogle Scholar
  113. Rendon, N. M., Keesom, S. M., Amadi, C., Hurley, L. M., & Demas, G. E. (2015). Vocalizations convey sex, seasonal phenotype, and aggression in a seasonal mammal. Physiology and Behavior, 152, 143–150. CrossRefPubMedGoogle Scholar
  114. Rilling, J. K., & Young, L. J. (2014). The biology of mammalian parenting and its effect on offspring social development. Science, 345, 771–776. CrossRefPubMedPubMedCentralGoogle Scholar
  115. Riters, L. V. (2012). The role of motivation and reward neural systems in vocal communication. Frontiers in Neuroendocrinology, 33, 194–209. CrossRefPubMedPubMedCentralGoogle Scholar
  116. Robison, W. T., Myers, M. M., Hofer, M. A., Shair, H. N., & Welch, M. G. (2016). Prairie vole pups show potentiated isolation-induced vocalizations following isolation from their mother, but not their father. Developmental Psychobiology, 58, 687–699. CrossRefPubMedGoogle Scholar
  117. Roullet, F. I., Wöhr, M., & Crawley, J. N. (2011). Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behavioral Brain Research, 216, 19–28. CrossRefGoogle Scholar
  118. Sakata, J. T., & Vehrencamp, S. L. (2012). Integrating perspectives on vocal performance and consistency. Journal of Experimental Biology, 215, 201–209. CrossRefPubMedGoogle Scholar
  119. Schneiderová, I., Schnitzerová, P., Uhlíková, J., Brandl, P., et al. (2015). Differences in alarm calls of juvenile and adult European ground squirrels (Spermophilus citellus): Findings on permanently marked animals from a semi-natural enclosure. Zoo Biology, 34, 503–512. CrossRefGoogle Scholar
  120. Seyfarth, R. M., Cheney, D. L., Bergman, T., Fischer, J., et al. (2010). The central importance of information in studies of animal communication. Animal Behaviour, 80, 3–8. CrossRefGoogle Scholar
  121. Shair, H. N. (2014). Parental potentiation of vocalization as a marker for filial bonds in infant animals. Developmental Psychobiology, 56, 1689–1697. CrossRefPubMedGoogle Scholar
  122. Shapiro, L. E., & Insel, T. R. (1990). Infant's response to social separation reflects adult differences in affiliative behavior: A comparative developmental study in prairie and montane voles. Developmental Psychobiology, 23, 375–393. CrossRefPubMedGoogle Scholar
  123. Shepard, K. N., & Liu, R. C. (2011). Experience restores innate female preference for male ultrasonic vocalizations. Genes, Brain and Behavior, 10, 28–34. CrossRefGoogle Scholar
  124. Shofner, W. P. (2000). Comparison of frequency discrimination thresholds for complex and single tones in chinchillas. Hearing Research, 149, 106–114. CrossRefPubMedGoogle Scholar
  125. Sisneros, J. A., Forlano, P. M., Deichter, D. L., & Bass, A. H. (2004). Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science, 305, 404–407. CrossRefPubMedGoogle Scholar
  126. Slobodchikoff, C. N., & Placer, J. (2006). Acoustic structures in the alarm calls of Gunnison's prairie dogs. The Journal of the Acoustical Society of America, 119, 3153–3160.CrossRefPubMedGoogle Scholar
  127. Smith, W. J. (1965). Message, meaning, and context in ethology. The American Naturalist, 99, 405–409. CrossRefGoogle Scholar
  128. Sugimoto, H., Okabe, S., Kato, M., Koshida, N., et al. (2011). A role for strain differences in waveforms of ultrasonic vocalizations during male-female interaction. PLoS One, 6, e22093. CrossRefPubMedPubMedCentralGoogle Scholar
  129. Szentgyörgyi, H., Kapusta, J., & Marchlewska-Koj, A. (2008). Ultrasonic calls of bank vole pups isolated and exposed to cold or to nest odor. Physiology and Behavior, 93, 296–303. CrossRefPubMedGoogle Scholar
  130. Tinbergen, N. (1963). On aims and methods of ethology. Ethology, 20, 410–433. CrossRefGoogle Scholar
  131. Vasudeva, R. K., Lin, R. C., Simpson, K. L., & Waterhouse, B. D. (2011). Functional organization of the dorsal raphe efferent system with special consideration of nitrergic cell groups. Journal of Chemical Neuroanatomy, 41, 281–293. CrossRefPubMedGoogle Scholar
  132. von Merten, S., Hoier, S., Pfeifle, C., & Tautz, D. (2014). A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One, 9, e97244. CrossRefGoogle Scholar
  133. Merten, S., Hoier, S., Pfeifle, C., & Tautz, D. (2015). Correction: A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One, 10(1), e0118130. CrossRefGoogle Scholar
  134. von Uexküll, J. (1934). Streifzüge durch die Umwelten von Tieren und Menschen. Berlin: Verlag von Julius Springer.CrossRefGoogle Scholar
  135. von Uexküll, J., von Uexküll, M., & O'Neil, J. D. (2010). A foray into the worlds of animals and humans, with a theory of meaning. Translated by J. D. O’Neil from 1934 publication. Minneapolis, MN: University of Minnesota Press.Google Scholar
  136. Voytenko, S. V., & Galazyuk, A. V. (2011). mGluRs modulate neuronal firing in the auditory midbrain. Neuroscience Letters, 492, 145–149. CrossRefPubMedGoogle Scholar
  137. Vyas, A., Harding, C., Borg, L., & Bogdan, D. (2008). Acoustic characteristics, early experience, and endocrine status interact to modulate female zebra finches’ behavioral responses to songs. Hormones and Behavior, 55, 50–59. CrossRefPubMedGoogle Scholar
  138. Ward, S., Speakman, J. R., & Slater, P. J. B. (2003). The energy cost of song in the canary, Serinus canaria. Animal Behaviour, 66(5), 893–902. CrossRefGoogle Scholar
  139. Wiedenmayer, C. P., Lyo, D., & Barr, G. A. (2003). Rat pups reduce ultrasonic vocalization after exposure to an adult male rat. Developmental Psychobiology, 42, 386–391. CrossRefPubMedGoogle Scholar
  140. Willadsen, M., Seffer, D., Schwarting, R. K. W., & Wöhr, M. (2014). Rodent ultrasonic communication: Male prosocial 50 kHz ultrasonic vocalizations elicit social approach behavior in female rats (Rattus norvegicus). Journal of Comparative Psychology, 128, 56–64. CrossRefPubMedGoogle Scholar
  141. Wilson, D. R., & Hare, J. F. (2004). Ground squirrel uses ultrasonic alarms. Nature, 430, 523–523. CrossRefPubMedGoogle Scholar
  142. Wilson, D. R., & Hare, J. F. (2006). The adaptive utility of Richardson's ground squirrel (Spermophilus richardsonii) short-range ultrasonic alarm signals. Canadian Journal of Zoology, 84, 1322–1330. CrossRefGoogle Scholar
  143. Woolley, S. C., & Doupe, A. J. (2008). Social context-induced song variation affects female behavior and gene expression. PLoS Biology, 6, e62. CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wright, S. L., & Brown, R. E. (2004). Sex differences in ultrasonic vocalizations and coordinated movement in the California mouse (Peromyscus californicus). Behavioral Processes, 65, 155–162. CrossRefGoogle Scholar
  145. Yoder, K. M., Phan, M. L., Lu, K., & Vicario, D. S. (2015). He hears, she hears: Are there sex differences in auditory processing? Developmental Neurobiology, 75, 302–314. CrossRefPubMedGoogle Scholar
  146. Yu, P., Wang, J., Tai, F., Broders, H., et al. (2011). The effects of repeated early deprivation on ultrasonic vocalizations and ontogenetic development in mandarin vole pups. Behavioral Processes, 88, 162–167. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laura M. Hurley
    • 1
    Email author
  • Matina C. Kalcounis-Rueppell
    • 2
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA
  2. 2.Biology DepartmentUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations