Lessons from Rodent Models for Genetic and Age-Related Hearing Loss

  • Kevin K. OhlemillerEmail author
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 67)


This chapter compares the six most heavily studied rodent models with regard to hearing-in-aging and the availability of mutant lines that recapitulate human genetic hearing loss. Four of the six models are available only as outbreds, and much of that work has been based on genetically nonstandard animals of unclear origin. Some of these (guinea pigs and chinchillas) may no longer resemble their wild counterparts. Some results from outbred models may not be reproducible, since it may be impossible for experimenters to know if they are testing the same genetic models. Likewise, engineered or induced mutations onto outbred lines may not be productive because characterization can be confounded by variable and unknown modifier genes. Naturally arising coat color-related mutations may influence hearing through an absence of melanin or melanocytes. These lines may not be commercially available, however. Hamsters are not well described with respect to detailed hearing or aging studies. Gerbils, guinea pigs, and chinchillas are well explored both as general hearing models and as aging models. Inbred mice and rats have become the primary models for most research over the last 20 years. Inbred models offer a high degree of genetic standardization and reproducibility of results. Their short lifespans and the availability of lines with progressive hearing loss have made mice and rats popular for aging research. They also foster transgenic methods and gene discovery, but mice and rats may not be optimal for studies that require low-frequency hearing or readily accessible inner ear fluid spaces.


Auditory neuron Chinchilla Cochlea Endocochlear potential Gerbil Guinea pig Hair cells Hamster Inbred stock Mouse Mutation Outbred stock Presbycusis Rat Stria vascularis 


Compliance with Ethics Requirements

Kevin Ohlemiller declares that he has no conflict of interest.


  1. Ahmad, M., Bohne, B. A., & Harding, G. W. (2003). An in vivo tracer study of noise-induced damage to the reticular lamina. Hearing Research, 175, 82–100.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alizadeh, A., Hong, L. Z., Kaelin, C. B., Raudsepp, T., et al. (2009). Genetics of sex-linked yellow in the Syrian hamster. Genetics, 181, 1427–1436.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Allen, P. D., & Eddins, D. A. (2010). Presbycusis phenotypes form a heterogeneous continuum when ordered by degree and configuration of hearing loss. Hearing Research, 264, 10–20.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amedofu, G. K., Gopal, K. V., Asher, Jr., J. H., Ahmadizadeh, M., & Moore, E. J. (1999). Auditory brainstem responses in golden Syrian hamsters (Mesocricetus auratus) affected with the Wh gene. Comparative Medicine, 49, 173–178.Google Scholar
  5. Bielefeld, E., Coling, D. E., Chen, G.-D., Li, M., et al. (2008). Age-related hearing loss in the Fischer 344/NHsd rat substrain. Hearing Research, 241, 26–33.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bohne, B. A. (1972). Location of small cochlear lesions by phase contrast microscopy prior to thin sectioning. The Laryngoscope, 82, 1–16.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bohne, B. A., Gruner, M. M., & Harding, G. W. (1990). Morphological correlates of aging in the chinchilla cochlea. Hearing Research, 48, 79–91.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bourien, J., Tang, Y., Batrel, C., Huet, A., et al. (2014). Contribution of auditory nerve fibers to compound action potential of the auditory nerve. Journal of Neurophysiology, 112, 1025–1039.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bowl, M. R., & Dawson, S. J. (2015). The mouse as a model for age-related hearing loss—a mini-review. Gerontology, 61, 149–157.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Buckiova, D., Popelar, J., & Syka, J. (2007). Aging cochleas in the F344 rat: Morphological and functional changes. Experimental Gerontology, 42, 629–638.PubMedCrossRefGoogle Scholar
  11. Cable, J., Jackson, I. J., & Steel, K. P. (1993). Light (Blt), a mutation that causes melanocyte death, affects stria vascularis function in the mouse inner ear. Pigment Cell Research, 6, 215–225.PubMedCrossRefGoogle Scholar
  12. Chen, G. D., Li, M., Tanaka, C., Bielefeld, E. C., et al. (2009). Aging outer hair cells (OHCs) in the Fischer 344 rat cochlea: Function and morphology. Hearing Research, 248, 39–47.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Clark, W. W., Clark, C. S., Moody, D. B., & Stebbins, W. C. (1974). Noise-induced hearing loss in the chinchilla as determined by a positive-reinforcement technique. The Journal of the Acoustical Society of America, 56, 1202–1209.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Clark, W. W., Bohne, B. A., & Boettcher, F. A. (1987). Effect of periodic rest on hearing loss and cochlear damage following exposure to noise. The Journal of the Acoustical Society of America, 82, 1253–1263.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Coleman, J. W. (1976). Hair cell loss as a function of age in the normal cochlea of the guinea pig. Acta Otolaryngologica, 82, 33–40.CrossRefGoogle Scholar
  16. Conlee, J. W., Abdul-Baqi, K. J., McCandless, G. A., & Creel, D. J. (1986). Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hearing Research, 23, 81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Conlee, J. W., Abdul-Baqi, K. J., McCandless, G. A., & Creel, D. J. (1988). Effects of aging on normal hearing loss and noise-induced threshold shift in albino and pigmented guinea pigs. Acta Otolaryngologica, 106, 64–70.CrossRefGoogle Scholar
  18. Cooper, N. P., & Yates, G. K. (1994). Nonlinear input-output functions derived from the responses of guinea-pig cochlear nerve fibres: Variations with characteristic frequency. Hearing Research, 78, 221–234.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Covell, W. P., & Rogers, J. B. (1957). Pathologic changes in the inner ear of senile guinea pigs. Laryngoscope, 67, 118–129.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dallos, P., & Cheatham, M. A. (1992). Cochlear hair cell function reflected in intracellular recordings in vivo. Society of General Physiologists, Series 47, 371–393.Google Scholar
  21. Dawes, P., & Payton, A. (2016). Genetics of age-related hearing loss. In B. Vona & T. Haaf (Eds.), Genetics of deafness (pp. 84–96). New York: Karger.CrossRefGoogle Scholar
  22. Eggermont, J. J., & Roberts, L. E. (2015). Tinnitus: Animal models and findings in humans. Cell and Tissue Research, 36, 311–336.CrossRefGoogle Scholar
  23. Ernstson, S. (1971). Cochlear morphology in a strain of the waltzing guinea pig. Acta Otolaryngologica, 71, 469–482.CrossRefGoogle Scholar
  24. Faddis, B. T., & McGinn, M. D. (1997). Spongiform degeneration of the gerbil cochlear nucleus: An ultrastructural and immunohistochemical evaluation. Journal of Neurocytology, 26, 625–635.PubMedCrossRefGoogle Scholar
  25. Festing, M. F. (1976). The guinea pig. In Universities Federation for Animal Welfare Handbook on the Care and Management of Laboratory Animals (pp. 229–247). Edinburgh: Churchill Livingstone.Google Scholar
  26. Festing, M. F. (2010). Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicological Pathology, 38, 681–690.CrossRefGoogle Scholar
  27. Fournier, P., & Hébert, S. (2013). Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: Does tinnitus fill in the gap? Hearing Research, 295, 16–23.PubMedCrossRefGoogle Scholar
  28. Fransen, E., Lemkens, N., Van Laer, L., & Van Camp, G. (2003). Age-related hearing impairment (ARHI): Environmental risk factors and genetic prospects. Experimental Gerontology, 38, 353–359.PubMedCrossRefGoogle Scholar
  29. Fransen, E., Bonneux, S., Corneveaux, J. J., Schrauwen, I., et al. (2015). Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. European Journal of Human Genetics, 23, 110–115.PubMedCrossRefGoogle Scholar
  30. French, A. S. (1992). Mechanotransduction. Annual Review of Physiology, 54, 135–152.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology, 110, 577–586.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Galazyuk, A., & Hébert, S. (2015). Gap-prepulse inhibition of the acoustic startle reflex (GPIAS) for tinnitus assessment: Current status and future directions. Frontiers in Neurology, 6.
  33. Gratton, M. A., & Schulte, B. A. (1995). Alterations in microvasculature are associated with atrophy of the stria vascularis in quiet-aged gerbils. Hearing Research, 82, 44–52.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hamernik, R. P., Patterson, J. H., Turrentine, G. A., & Ahroon, W. A. (1989). The quantitative relation between sensory cell loss and hearing thresholds. Hearing Research, 38, 199–212.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Heffner, H., & Masterton, B. (1980). Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. The Journal of the Acoustical Society of America, 68, 1584–1599.CrossRefGoogle Scholar
  36. Hirose, K., & Liberman, M. C. (2003). Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. Journal of the Association for Research in Otolaryngology, 4, 339–352.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jagger, D. J., Nevill, G., & Forge, A. (2010). The membrane properties of cochlear root cells are consistent with roles in potassium recirculation and spatial buffering. Journal of the Association for Research in Otolaryngology, 11, 435–448.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jin, Z., Mannström, P., Skjönsberg, Å., Järlebark, L., & Ulfendahl, M. (2006). Auditory function and cochlear morphology in the German waltzing guinea pig. Hearing Research, 219, 74–84.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Jin, Z., Mannström, P., Järlebark, L., & Ulfendahl, M. (2007). Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig. Cell and Tissue Research, 328, 257–270.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Johnson, K. R., Erway, L. C., Cook, S. A., Willott, J. F., & Zheng, Q. Y. (1997). A major gene affecting age-related hearing loss in C57BL/6J mice. Hearing Research, 114, 83–92.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Johnson, K. R., Zheng, Q. Y., & Erway, L. C. (2000). A major gene affecting age-related hearing loss is common to at least 10 inbred strains of mice. Genomics, 70, 171–180.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kawaguchi, S., Hultcrantz, M., Jin, Z., Ulfendahl, M., & Suzuki, M. (2010). Vestibular morphology in the German waltzing guinea pig. Journal of Otolaryngology--Head & Neck Surgery, 39(2), 115–121.Google Scholar
  43. Ketten, D. R. (1992). The marine mammal ear: Specializations for aquatic audition and echolocation. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 717–750). New York: Springer-Verlag.CrossRefGoogle Scholar
  44. Khimich, D., Nouvian, R., Pujol, R., tom Dieck, S., et al. (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature, 434, 889–894.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kim, H. J., & Chole, R. A. (1998). Experimental models of aural cholesteatomas in Mongolian gerbils. Annals of Otology, Rhinology & Laryngology, 107, 129–134.CrossRefGoogle Scholar
  46. Kobayashi, T., Aslan, A., Chiba, T., Takasaka, T., & Sanna, M. (1996). Measurement of endocochlear DC potentials in ears with acoustic neuromas: A preliminary report. Acta Oto-Laryngologica, 116, 791–795.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise: Evidence of a misspent youth. The Journal of Neuroscience, 26, 2115–2123.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after 'temporary' noise-induced hearing loss. The Journal of Neuroscience, 29, 14077–14085.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309, 481–484.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lang, H., Schulte, B. A., Zhou, D., Smythe, N., et al. (2006). Nuclear factor κB deficiency is associated with auditory nerve degeneration and increased noise-induced hearing loss. The Journal of Neuroscience, 26, 3541–3550.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lee, R. J., Hong, J. S., McGinty, J. F., & Lomax, P. (1987). Increased enkephalin and dynorphin immunoreactivity in the hippocampus of seizure sensitive Mongolian gerbils. Brain Research, 401, 353–358.PubMedCrossRefGoogle Scholar
  52. Lobarinas, E., Salvi, R., & Ding, D. (2013a). Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hearing Research, 302, 113–120.PubMedCrossRefGoogle Scholar
  53. Lobarinas, E., Hayes, S. H., & Allman, B. L. (2013b). The gap-startle paradigm for tinnitus screening in animal models: Limitations and optimization. Hearing Research, 295, 150–160.PubMedCrossRefGoogle Scholar
  54. Long, G. R., & Clark, W. W. (1984). Detection of frequency and rate modulations by the chinchilla. The Journal of the Acoustical Society of America, 75, 1184–1190.PubMedCrossRefGoogle Scholar
  55. Longenecker, R. J., & Galazyuk, A. V. (2011). Development of tinnitus in CBA/CaJ mice following sound exposure. Journal of the Association for Research in Otolaryngology, 12, 647–658.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Makary, C. A., Shin, S., Kujawa, S. G., Liberman, M. C., & Merchant, S. N. (2011). Age-related primary cochear neuronal degeneration in human temporal bones. Journal of the Association for Research in Otolaryngology, 12, 711–717.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Masterton, B., Heffner, H., & Ravizza, R. (1969). The evolution of human hearing. The Journal of the Acoustical Society of America, 45, 966–985.PubMedCrossRefPubMedCentralGoogle Scholar
  58. McFadden, S. L., Quaranta, N., & Henderson, D. (1997). Suprathreshold measures of auditory function in the aging chinchilla. Hearing Research, 111, 127–135.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Miller, J. D. (1970). Audibility curve of the chinchilla. The Journal of the Acoustical Society of America, 48, 513–523.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Moser, T., & Starr, A. (2016). Auditory neuropathy—neural and synaptic mechanisms. Nature Reviews Neurology, 12, 135–149.PubMedCrossRefGoogle Scholar
  61. Naito, R., Murofushi, T., Mizutani, M., & Kaga, K. (1999). Auditory brainstem responses, electrocochleograms, and cochlear microphonics in the myelin deficient mutant hamster ‘bt’. Hearing Research, 136, 44–48.PubMedCrossRefGoogle Scholar
  62. Ohlemiller, K. K. (2006). Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Research, 1091, 89–102.PubMedCrossRefGoogle Scholar
  63. Ohlemiller, K. K. (2009). Mechanisms and genes in human strial presbycusis from animal models. Brain Research, 1277, 70–83.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ohlemiller, K. K. (2012). Current issues in noise exposure. In K. L. Tremblay & R. F. Burkard (Eds.), Translational perspectives in auditory neuroscience. Vol. 3 (pp. 1–34). San Diego: Plural Publishing.Google Scholar
  65. Ohlemiller, K. K. (2015). A question of balance: Free radicals in inner ear homeostasis. In J. Miller & C. G. Le Prell (Eds.), Free radicals in ENT medicine (pp. 21–55). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  66. Ohlemiller, K. K., & Frisina, R. D. (2008). Age-related hearing loss and its cellular and molecular bases. In J. Schacht, A. N. Popper, & R. R. Fay (Eds.), Auditory trauma, protection, and repair (pp. 145–194). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  67. Ohlemiller, K. K., & Siegel, J. H. (1992). Effects of cooling on gross cochlear potentials in the gerbil: Basal and apical differences. Hearing Research, 63, 79–89.PubMedCrossRefGoogle Scholar
  68. Ohlemiller, K. K., & Siegel, J. H. (1994). Cochlear basal and apical differences reflected in the effects of cooling on responses of single auditory nerve fibers. Hearing Research, 80, 174–190.PubMedCrossRefGoogle Scholar
  69. Ohlemiller, K. K., Lett, J. M., & Gagnon, P. M. (2006). Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hearing Research, 220, 10–26.PubMedCrossRefGoogle Scholar
  70. Ohlemiller, K. K., Rice, M. R., Lett, J. M., & Gagnon, P. M. (2009). Absence of strial melanin coincides with age-associated marginal cell loss and endocochlear potential decline. Hearing Research, 249, 1–14.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ohlemiller, K. K., Dahl, A. R., & Gagnon, P. M. (2010). Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. Journal of the Association for Research in Otolaryngology, 11, 605–623.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ohlemiller, K. K., Rosen, A. R., Rellinger, E. A., Montgomery, S.C, & Gagnon, P. M. (2011). Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. Journal of the Association for Research in Otolaryngology, 12, 45–58.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Ohlemiller, K. K., Jones, S. M., & Johnson, K. R. (2016). Application of mouse models to research in hearing and balance. Journal of the Association for Research in Otolaryngology, 17, 1–31.CrossRefGoogle Scholar
  74. Parker, C. C., & Palmer, A. A. (2011). Dark matter: Are mice the solution to missing heritability? Froniters in Genetics, 2, 32.
  75. Patuzzi, R. (2011). Ion flow in cochlear hair cells and the regulation of hearing sensitivity. Hearing Research, 280, 3–20.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Petkov, P. M., Ding, Y., Cassell, M. A., Zhang, W., et al. (2004). An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Research, 14, 1806–1811.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pollak, G. D. (1992). Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the mustache bat. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 751–778). New York: Springer-Verlag.CrossRefGoogle Scholar
  78. Pritt, S., Hargaden, M., Singer, L., Smith, G. D., et al. (2012). The laboratory rabbit, guinea pig, hamster, and other rodents. San Diego: Academic Press.Google Scholar
  79. Prosen, C. A., Moody, D. B., Stebbins, W. C., Smith, D. W., et al. (1990). Apical hair cells and hearing. Hearing Research, 44, 179–193.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Provenzano, M. J., & Domann, F. E. (2007). A role for epigenetics in hearing: Establishment and maintenance of auditory specific gene expression patterns. Hearing Research, 233, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ravicz, M. E., & Rosowski, J. J. (1997). Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus: III. Effect of variations in middle-ear volume. The Journal of the Acoustical Society of America, 101, 2135–2147.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rosowski, J. J. (1992). Hearing in transitional mammals: Predictions from the middle-ear anatomy and hearing capabilities of extant mammals. In D. B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 615–631). New York: Springer-Verlag.CrossRefGoogle Scholar
  83. Ruggero, M. A., & Rich, N. C. (1983). Chinchilla auditory-nerve responses to low-frequency tones. The Journal of the Acoustical Society of America, 73, 2096–2108.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Russell, I. J., & Sellick, P. M. (1978). Intracellular studies of hair cells in the mammalian cochlea. Journal of Physiology, 284, 261–289.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Ryan, A. (1976). Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. The Journal of the Acoustical Society of America, 59, 1222–1226.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sánchez-Benito, D., Gómez-Nieto, R., Hernández-Noriega, S., Murashima, A. A. B., et al. (2017). Morphofunctional alterations in the olivocochlear efferent system of the genetic audiogenic seizure-prone hamster GASH: Sal. Epilepsy & Behavior, 71, 193–206.CrossRefGoogle Scholar
  87. Schmiedt, R. A. (2010). The physiology of cochlear presbycusis. In S. Gordon-Salant, R. D. Frisina, A. N. Popper, & R. R. Fay (Eds.), The aging auditory system (pp. 9–38). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  88. Schmiedt, R. A., & Zwislocki, J. J. (1977). Comparison of sound-transmission and cochlear-microphonic characteristics in Mongolian gerbil and guinea pig. The Journal of the Acoustical Society of America, 61, 133–149.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Schmiedt, R. A., Zwislocki, J. J., & Hamernik, R. P. (1980). Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal wave patterns. Journal of Neurophysiology, 43, 1367–1389.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Schuknecht, H. F. (1964). Further observations on the pathology of presbycusis. Archives of Otolaryngology, 80, 369–382.PubMedCrossRefGoogle Scholar
  91. Schuknecht, H. F. (1993). Pathology of the ear. 2nd ed. Philadelphia: Lea and Febiger.Google Scholar
  92. Schuknecht, H. F., & Gacek, M. R. (1993). Cochlear pathology in presbycusis. Annals of Otology, Rhinology and Laryngology, 102, 1–16.CrossRefGoogle Scholar
  93. Schulte, B. A., & Schmiedt, R. A. (1992). Lateral wall Na, K-ATPase and endodochlear potentials decline with age in quiet-reared gerbils. Hearing Research, 61, 35–46.PubMedCrossRefGoogle Scholar
  94. Senthilan, P. R., Piepenbrock, D., Ovezmyradov, G., Nadrowski, B., et al. (2012). Drosophila auditory organ genes and genetic hearing defects. Cell, 150, 1042–1054.PubMedCrossRefGoogle Scholar
  95. Sewell, W. (1984). The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats. Hearing Research, 14, 305–314.PubMedCrossRefGoogle Scholar
  96. Shimoyama, M., Smith, J. R., De Pons, J., Tutaj, M., et al. (2016). The chinchilla research resource database: Resource for an otolaryngology disease model. Database: The Journal of Biological Databases and Curation, 2016.
  97. Silver, L. M. (1995). Mouse genetics. Oxford, UK: Oxford Press.Google Scholar
  98. Skjönsberg, Å., & Mannström, P. (2015). Reduced noise susceptibility in littermate offspring from heterozygous animals of the German waltzing guinea pig. Neuroreport, 26, 593–597.PubMedCrossRefGoogle Scholar
  99. Skjönsberg, Å., Duan, M., Johnson, A. C., & Ulfendahl, M. (2014). Effect of auditory stress agents on heterozygous German waltzing guinea pigs. Journal of Otology, 9, 179–190.CrossRefGoogle Scholar
  100. Slepecky, N. B. (1996). Structure of the mammalian cochlea. In P. Dallos, A. N. Popper, & R. D. Fay (Eds.), The cochlea (pp. 44–129). New York: Springer-Verlag.CrossRefGoogle Scholar
  101. Spicer, S. S., & Schulte, B. A. (2005). Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hearing Research, 205, 225–240.PubMedCrossRefGoogle Scholar
  102. Stamper, G. C., & Johnson, T. A. (2015). Auditory function in normal-hearing, noise-exposed human ears. Ear and Hearing, 36, 172.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Steel, K. P. (1995). Inherited hearing defects in mice. Annual Review of Genetics, 29, 675–701.PubMedCrossRefGoogle Scholar
  104. Steel, K. P. (2014). What’s the use of genetics? Perspectives on Auditory Research (pp. 569–584). New York: Springer Science+Business Media.Google Scholar
  105. Steel, K. P., & Brown, S. D. M. (1994). Genes and deafness. Trends in Genetics, 10, 428–435.PubMedCrossRefGoogle Scholar
  106. Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93, 557–569.PubMedCrossRefGoogle Scholar
  107. Tarnowski, B. I., Schmiedt, R. A., Hellstrom, L. I., Lee, F. S., & Adams, J. C. (1991). Age-related changes in cochleas of mongolian gerbils. Hearing Research, 54, 123–134.PubMedCrossRefGoogle Scholar
  108. Tran Ba Huy, P., Ferrary, E., & Roinel, N. (1989). Electrochemical and clinical observations in 11 cases of Meniere's disease. In J. B. Nadol (Ed.), Meniere's disease (pp. 241–246). Amsterdam: Kugler and Ghedini.Google Scholar
  109. Turner, J., Larsen, D., Hughes, L., Moechars, D., & Shore, S. (2012). Time course of tinnitus development following noise exposure in mice. Journal of Neuroscience Research, 90, 1480–1488.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ukaji, T., Iwasa, M. A., & Kai, O. (2016). Tyrosinase (Tyr) gene mutation in albino Mongolian gerbil (Meriones unguiculatus). Open Journal of Animal Sciences, 6, 259. CrossRefGoogle Scholar
  111. Wang, Y., Hirose, K., & Liberman, M. C. (2002). Dynamics of noise-induced cellular injury and repair in the mouse cochlea. Journal of the Association for Research in Otolaryngology, 3, 248–268.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Whitfield, T. T. (2002). Zebrafish as a model for hearing and deafness. Journal of Neurobiology, 53, 157–171.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Willott, J. F. (1983). Introduction: Mus musculus. In J. F. Williot (Ed.), Auditory psychobiology of the mouse (pp. 3–12). Springfield, IL: Charles C. Thomas.Google Scholar
  114. Willott, J. F. (Ed.). (2001). Handbook of mouse auditory research: From behavior to molecular biology. New York, NY: CRC Press.Google Scholar
  115. Winter, I. M., Robertson, D., & Yates, G. K. (1990). Diversity of characteristic frequency rate intensity functions in guinea pig auditory nerve fibers. Hearing Research, 45, 191–202.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yalcin, B., & Flint, J. (2012). Association studies in outbred mice in a new era of full-genome sequencing. Mammalian Genome, 23, 719–726.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zou, B., Mittal, R., Grati, M. H., Lu, Z., et al. (2015). The application of genome editing in studying hearing loss. Hearing Research, 327, 102–108.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fay and Carl Simons Center for Biology of Hearing and Deafness, Central Institute for the Deaf at Washington UniversitySaint LouisUSA
  2. 2.Department of OtolaryngologyWashington University, School of MedicineSaint LouisUSA

Personalised recommendations