Anatomy of Vocal Communication and Hearing in Rodents

  • M. Fabiana KubkeEmail author
  • J. Martin Wild
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 67)


Many animals produce sounds to communicate different types of information. More often than not, such sounds are vocal in nature and elicit a predictable behavioral response from the listener. While much of the literature on vocal communication derives from classic neuroethological studies on a number of vertebrates, rodents are fast becoming the group of choice to study vocalizations for a variety of reasons, not the least of which is the advantage they offer for genetic manipulation. Central to the study of vocal communication is the need to understand how the nervous system mediates vocal production and how the auditory system accesses the information within a communication signal that leads to an appropriate behavioral response. A key goal is to determine the essential features of communication signals, what information they transmit, how they are categorized, and in combination with information derived from other sensory modalities, how they are interpreted and linked to a context-appropriate motor response. There is a substantial body of literature on the anatomy and physiology of the neural pathways that mediate vocalizations in rodents, but exciting new research lines are investigating the role of learning in vocal communication and how the rodent nervous system processes complex vocal communication signals.


Auditory processing Auditory system Vocal control Vocal learning 



The authors are grateful to Micheal Dent, Art Popper, and Peggy Walton for useful improvements to the chapter and to Srdjan Vlajkovic for help with the interpretation of inner ear histological material.

Compliance with Ethics Statement

M. Fabiana Kubke declares that she has no conflicts of interest.

J. Martin Wild declares that he has no conflicts of interest.


  1. Aitkin, L., Tran, L., & Syka, J. (1994). The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli. Experimental Brain Research, 98(1), 53–64.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson, L. A., & Linden, J. F. (2011). Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hearing Research, 274(1-2), 48–60.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson, L. A., Wallace, M. N., & Palmer, A. R. (2007). Identification of subdivisions in the medial geniculate body of the guinea pig. Hearing Research, 228(1-2), 156–167.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One, 7(10), e46610.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beecher, M. D. (1996). Birdsong learning in the laboratory and field. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and evolution of acoustic communication in birds (pp. 61–78). Ithaca, New York: Comstock Publishing.Google Scholar
  7. Bennur, S., Tsunada, J., Cohen, Y. E., & Liu, R. C. (2013). Understanding the neurophysiological basis of auditory abilities for social communication: A perspective on the value of ethological paradigms. Hearing Research, 305, 3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berryman, J. C. (1976). Guinea-pig vocalizations: Their structure, causation and function. Zeitschrift für Tierpsychologie, 41(1), 80–106.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews, Neuroscience, 14(10), 693–707.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bradbury, J. W., Vehrencamp, S., & Bradbury, J. W. (1998). Principles of animal communication (1st ed.). Sunderland, MA: Sinauer Associates.Google Scholar
  11. Brown, J. L. (1965). Loss of vocalization caused by lesions in the nucleus mesencephalicus lateralis of the redwinged blackbird. American Zoologist, 5, 693.Google Scholar
  12. Budinger, E., Heil, P., & Scheich, H. (2000). Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience, 12(7), 2425–2451.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Burda, H., Bruns, V., & Hickman, G. C. (1992). The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. I. Sound conducting system of the middle ear. Journal of Morphology, 214(1), 49–61.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cant, N. B., & Benson, C. G. (2006). Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): Differences in distribution of projections from the cochlear nuclei and the superior olivary complex. The Journal of Comparative Neurology, 495(5), 511–528.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carruthers, I. M., Natan, R. G., & Geffen, M. N. (2013). Encoding of ultrasonic vocalizations in the auditory cortex. Journal of Neurophysiology, 109(7), 1912–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22(1), 567–631.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dujardin, E., & Jürgens, U. (2005). Afferents of vocalization-controlling periaqueductal regions in the squirrel monkey. Brain Research, 1034(1-2), 114–131.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Eggermont, J. (2001). Between sound and perception: Reviewing the search for a neural code. Hearing Research, 157, 1–42.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Egnor, S. R., & Seagraves, K. M. (2016). The contribution of ultrasonic vocalizations to mouse courtship. Current Opinion in Neurobiology, 38, 1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Escabí, M. A., & Read, H. L. (2003). Representation of spectrotemporal sound information in the ascending auditory pathway. Biological Cybernetics, 89, 350–362.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Espmark, Y., Amundsen, T., & Rosenqvist, G. (2000). Animal signals: Signalling and signal design in animal communication. Trondheim (Norway): Tapir Academic Press.Google Scholar
  22. Esposito, A., Demeurisse, G., Alberti, B., & Fabbro, F. (1999). Complete mutism after midbrain periaqueductal gray lesion. Neuroreport, 10(4), 681–685.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Fischer, J., & Hammerschmidt, K. (2011). Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: Insights into the evolution of vocal communication. Genes, Brain, and Behavior, 10(1), 17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166–177.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fitch, W. T., Huber, L., & Bugnyar, T. (2010). Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron, 65(6), 795–814.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  27. Frisina, R. D. (2001). Subcortical neural coding mechanisms for auditory temporal processing. Hearing Research, 158(1-2), 1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., et al. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15(1), 63–79.CrossRefGoogle Scholar
  29. Garcia-Lazaro, J. A., Shepard, K. N., Miranda, J. A., Liu, R. C., & Lesica, N. A. (2015). An overrepresentation of high frequencies in the mouse inferior colliculus supports the processing of ultrasonic vocalizations.PLoS One, 10(8), e0133251.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9(4), 390–401.CrossRefGoogle Scholar
  31. Gaucher, Q., Huetz, C., Gourévitch, B., & Edeline, J.-M. (2013a). Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex. The Journal of Neuroscience, 33(26), 10713–10728.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gaucher, Q., Huetz, C., Gourévitch, B., Laudanski, J., et al. (2013b). How do auditory cortex neurons represent communication sounds? Hearing Research, 305, 102–112.PubMedCrossRefGoogle Scholar
  33. Geissler, D. B., & Ehret, G. (2004). Auditory perception vs. recognition: Representation of complex communication sounds in the mouse auditory cortical fields. European Journal of Neuroscience, 19(4), 1027–1040.PubMedCrossRefGoogle Scholar
  34. Gentner, T. Q., & Margoliash, D. (2003). The neuroethology of vocal communication: Perception and cognition. In A. M. Simmons, R. R. Fay & A. N. Popper (Eds.), Acoustic communication (pp. 324–386). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  35. Gittelman, J. X., Perkel, D. J., & Portfors, C. V. (2013). Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. Journal of the Association for Research in Otolaryngology, 14(5), 719–729.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews, Neuroscience, 5(11), 887–892.PubMedCrossRefGoogle Scholar
  37. Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1-2), 133–146.PubMedCrossRefGoogle Scholar
  38. Hafner, M. S., & Hafner, D. J. (1979). Vocalizations of grasshopper mice (Genus Onychomys). Journal of Mammalogy, 60(1), 85–94.CrossRefGoogle Scholar
  39. Hammerschmidt, K., Whelan, G., Eichele, G., & Fischer, J. (2015). Mice lacking the cerebral cortex develop normal song: Insights into the foundations of vocal learning. Scientific Reports, 5, 8808.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hammerschmidt, K., Reisinger, E., Westekemper, K., Ehrenreich, L., et al. (2012). Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience, 13(1), 40.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Han, Y. K., Köver, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 1191–1197.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Harris, K. D., Bartho, P., Chadderton, P., Curto, C., et al. (2011). How do neurons work together? Lessons from auditory cortex. Hearing Research, 271(1-2), 37–53.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Harrison, D. F. N. (1995). The anatomy and physiology of the mammalian larynx. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  44. Harrison, J. M., & Warr, W. B. (1962). A study of the cochlear nuclei and ascending auditory pathways of the medulla. The Journal of Comparative Neurology, 119(3), 341–379.PubMedCrossRefGoogle Scholar
  45. Hashikawa, K., Hashikawa, Y., Falkner, A., & Lin, D. (2016). The neural circuits of mating and fighting in male mice. Current Opinion in Neurobiology, 38, 27–37.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hauser, M. D. (1999). The design of animal communication. Cambridge, MA: MIT Press.Google Scholar
  47. He, J. (2003). Corticofugal modulation of the auditory thalamus. Experimental Brain Research, 153(4), 579–590.PubMedCrossRefGoogle Scholar
  48. Heckman, J., McGuinness, B., Celikel, T., & Englitz, B. (2016). Determinants of the mouse ultrasonic vocal structure and repertoire. Neuroscience & Biobehavioral Reviews, 65, 313–325.CrossRefGoogle Scholar
  49. Heffner, R. S., Koay, G., & Heffner, H. E. (2001). Audiograms of five species of rodents: Implications for the evolution of hearing and the perception of pitch. Hearing Research, 157(1–2), 138–152.PubMedCrossRefGoogle Scholar
  50. Heil, P., & Peterson, A. J. (2015). Basic response properties of auditory nerve fibers: A review. Cell and Tissue Research, 361(1), 129–158.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Herbst, C. T. (2016). Biophysics of vocal production in mammals. In R. A. Suthers, W. T. Fitch, R. R. Fay, & A. N. Popper (Eds.), Vertebrate sound production and acoustic communication (pp. 159–189). New York: Springer International Publishing.CrossRefGoogle Scholar
  52. Holmstrom, L. A., Eeuwes, L. B. M., Roberts, P. D., & Portfors, C. V. (2010). Efficient encoding of vocalizations in the auditory midbrain. The Journal of Neuroscience, 30(3), 802–819.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Holstege, G. (1989). Anatomical study of the final common pathway for vocalization in the cat. The Journal of Comparative Neurology, 284(2), 242–252.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Holstege, G., & Subramanian, H. H. (2016). Two different motor systems are needed to generate human speech. The Journal of Comparative Neurology, 524(8), 1558–1577.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Holstege, G., Kerstens, L., Moes, M. C., & VanderHorst, V. G. J. M. (1997). Evidence for a periaqueductal gray–nucleus retroambiguus–spinal cord pathway in the rat. Neuroscience, 80(2), 587–598.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Honma, Y., Tsukano, H., Horie, M., Ohshima, S., et al. (2013). Auditory cortical areas ativated by slow frequency-modulated sounds in mice.PLoS One, 8(7), e68113.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hu, B. (2003). Functional organization of lemniscal and nonlemniscal auditory thalamus. Experimental Brain Research, 153(4), 543–549.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Huetz, C., Philibert, B., & Edeline, J.-M. (2009). A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. The Journal of Neuroscience, 29(2), 334–350.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Huetz, C., Gourévitch, B., & Edeline, J.-M. (2011). Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds. Hearing Research, 271(1-2), 147–158.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H., & Toyokura, Y. (1990). Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology, 40(2), 309.PubMedCrossRefGoogle Scholar
  61. Jacomme, A. V., Nodal, F. R., Bajo, V. M., Manunta, Y., et al. (2003). The projection from auditory cortex to cochlear nucleus in guinea pigs: An in vivo anatomical and in vitro electrophysiological study. Experimental Brain Research, 153(4), 467–476.PubMedCrossRefGoogle Scholar
  62. Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. In P. J.B. Slater, J. S. Rosenblatt, C. T. Snowdon, & M. Milinski (Eds.), Advances in the study of behavior (pp. 59–99). New York: Academic Press.Google Scholar
  63. Janik, V. M., & Slater, P. J. B. (2000). The different roles of social learning in vocal communication. Animal Behaviour, 60(1), 1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84(2), 541–577.PubMedCrossRefGoogle Scholar
  65. Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258.CrossRefGoogle Scholar
  66. Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice, 23(1), 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kershenbaum, A., Blumstein, D. T., Roch, M. A., Akçay, Ç., et al. (2016). Acoustic sequences in non-human animals: A tutorial review and prospectus. Biological Reviews of the Cambridge Philosophical Society, 91(1), 13–52.PubMedCrossRefPubMedCentralGoogle Scholar
  68. King, J., Insanally, M., Jin, M., Martins, A. R. O., et al. (2015). Rodent auditory perception: Critical band limitations and plasticity. Neuroscience, 296, 55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Köver, H., Gill, K., Tseng, Y.-T. L., & Bao, S. (2013). Perceptual and neuronal boundary learned from higher-order stimulus probabilities. The Journal of Neuroscience, 33(8), 3699–3705.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72(3), 1270–1277.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kubota, M., Sugimoto, S., Hosokawa, Y., Ojima, H., & Horikawa, J. (2017). Auditory-visual integration in fields of the auditory cortex. Hearing Research, 346, 25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kuo, R. I., & Wu, G. K. (2012). The generation of direction selectivity in the auditory system. Neuron, 73(5), 1016–1027.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kuypers, H. G. J. M. (1958). Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. The Journal of Comparative Neurology, 110(2), 221–255.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Lange, S., Burda, H., Wegner, R. E., Dammann, P., et al. (2007). Living in a "stethoscope": Burrow acoustics promote auditory specializations in subterranean rodents. Die Naturwissenschaften, 94(2), 134–138.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lavocat, R., & Parent, J.-P. (1985). Phylogenetic analysis of middle ear features in fossil and living rodents. In Evolutionary relationships among rodents (pp. 333–354). NATO Advanced Science Institutes Series A: Life Sciences. Boston: Springer.Google Scholar
  76. Lee, C. C. (2013). Thalamic and cortical pathways supporting auditory processing. Brain and Language, 126(1), 22–28.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lee, C. C. (2015). Exploring functions for the non-lemniscal auditory thalamus. Frontiers in Neural Circuits, 9, 69.PubMedPubMedCentralCrossRefGoogle Scholar
  78. López, D. E., Saldaña, E., Nodal, F. R., Merchán, M. A., & Warr, W. B. (1999). Projections of cochlear root neurons, sentinels of the rat auditory pathway. The Journal of Comparative Neurology, 415(2), 160–174.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lorente de No, R. (1933). Anatomy of the eighth nerve. III. General plan of stucture of the primary cochlear nuclei. Laryngoscope, 43, 327–350.Google Scholar
  80. Lyzwa, D., Herrmann, J. M., & Wörgötter, F. (2015). Natural vocalizations in the mammalian inferior colliculus are broadly encoded by a small number of independent multi-units. Frontiers in Neural Circuits, 9, 91.PubMedPubMedCentralGoogle Scholar
  81. Mahrt, E., Agarwal, A., Perkel, D., Portfors, C., & Elemans, C. P. H. (2016). Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets. Current Biology, 26(19), R880–R881.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Malmierca, M. S. (2003). The structure and physiology of the rat auditory system: An overview. International Review of Neurobiology, 56, 147–211.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Manley, G. A. (2017). Comparative auditory neuroscience: Understanding the evolution and function of ears. Journal of the Association for Research in Otolaryngology, 18(1), 1–24.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Marler, P. (1957). Specific distinctiveness in the communication signals of birds. Behaviour, 11(1), 13–38.CrossRefGoogle Scholar
  85. Mason, M. J. (2001). Middle ear structures in fossorial mammals: A comparison with non-fossorial species. Journal of Zoology, 255(4), 467–486.CrossRefGoogle Scholar
  86. Mason, M. J. (2013). Of mice, moles and guinea pigs: Functional morphology of the middle ear in living mammals. Hearing Research, 301, 4–18.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Matsumoto, Y. K., Okanoya, K., & Seki, Y. (2012). Effects of amygdala lesions on male mouse ultrasonic vocalizations and copulatory behaviour. Neuroreport, 23(11), 676–680.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Montgomery, J. C., & Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neuroscience Letters, 174(2), 145–148.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Nakagawa, R., Matsunaga, E., & Okanoya, K. (2012). Defects in ultrasonic vocalization of Cadherin-6 knockout mice. PLoS One, 7(11), e49233.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nelken, I. (2008). Processing of complex sounds in the auditory system. Current Opinion in Neurobiology, 18(4), 413–417.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Newman, D. B., Hilleary, S. K., & Ginsberg, C. Y. (1989). Nuclear terminations of corticoreticular fiber systems in rats. Brain, Behavior and Evolution, 34(4), 253–264.CrossRefGoogle Scholar
  92. Nodal, F. R., & López, D. E. (2003). Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat. The Journal of Comparative Neurology, 460(1), 80–93.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Nottebohm, F., Stokes, T. M., & Leonard, C. M. (1976). Central control of song in the canary, Serinus canarius. The Journal of Comparative Neurology, 165(4), 457–486.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Nyby, J. G. (2010). Adult house mouse (Mus musculus) ultrasonic calls: Hormonal and pheromonal regulation. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 303–310). New York: Elsevier.Google Scholar
  95. Ohlemiller, K. K., Jones, S. M., & Johnson, K. R. (2016). Application of mouse models to research in hearing and balance. Journal of the Association for Research in Otolaryngology, 17(6), 493–523.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pannese, A., Grandjean, D., & Frühholz, S. (2015). Subcortical processing in auditory communication. Hearing Research, 328, 67–77.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Philibert, B., Laudanski, J., & Edeline, J. M. (2005). Auditory thalamus responses to guinea-pig vocalizations: A comparison between rat and guinea-pig. Hearing Research, 209(1-2), 97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Phillips, R. E., & Peek, F. W. (1975). Brain organization and neuromuscular control of vocalization in birds. In P. Wright, P. Caryl, & D. Vowles (Eds.), Hormones and behavior in vertebrates (pp. 243–274). Amsterdam: Elsevier.Google Scholar
  99. Pollak, G. D. (2013). The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hearing Research, 305, 86–101.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Pollak, G. D., Burger, R. M., & Klug, A. (2003). Dissecting the circuitry of the auditory system. Trends in Neurosciences, 26(1), 33–39.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Popelář, J., Šuta, D., Lindovský, J., Bureš, Z., et al. (2016). Cooling of the auditory cortex modifies neuronal activity in the inferior colliculus in rats. Hearing Research, 332, 7–16.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Poremba, A., Bigelow, J., & Rossi, B. (2013). Processing of communication sounds: Contributions of learning, memory, and experience. Hearing Research, 305, 31–44.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46(1), 28–34.PubMedPubMedCentralGoogle Scholar
  104. Portfors, C. V., & Felix, R. A. (2005). Spectral integration in the inferior colliculus of the CBA/CaJ mouse. Neuroscience, 136(4), 1159–1170.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Portfors, C. V., Roberts, P. D., & Jonson, K. (2009). Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience, 162(2), 486–500.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Portfors, C. V., Mayko, Z. M., Jonson, K., Cha, G. F., & Roberts, P. D. (2011). Spatial organization of receptive fields in the auditory midbrain of awake mouse. Neuroscience, 193, 429–439.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Ramón y Cajal, S. (1904). Textura del sistema nervioso del hombre y de los vertebrados (Edicion Facsimil 1992, Volume II). Alicante, Spain: Graficas Vidal Leuka.Google Scholar
  108. Riede, T. (2013). Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(4), 213–224.CrossRefGoogle Scholar
  109. Roberts, L. H. (1975). The functional anatomy of the rodent larynx in relation to audible and ultrasonic cry production. Zoological Journal of the Linnean Society, 56(3), 255–264.CrossRefGoogle Scholar
  110. Rosowski, J. J. (1994). Outer and middle ears. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer-Verlag.CrossRefGoogle Scholar
  111. Saldeitis, K., Happel, M. F. K., Ohl, F. W., Scheich, H., & Budinger, E. (2014). Anatomy of the auditory thalamocortical system in the mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. The Journal of Comparative Neurology, 522(10), 2397–2430.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Sales, G., & Pye, D. (1974). Ultrasonic communication by animals. New York: Springer-Verlag.CrossRefGoogle Scholar
  113. Sanes, D. H., & Woolley, S. M. N. (2011). A behavioral framework to guide research on central auditory development and plasticity. Neuron, 72(6), 912–929.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sayegh, R., Aubie, B., & Faure, P. A. (2011). Duration tuning in the auditory midbrain of echolocating and non-echolocating vertebrates. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 571–583.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Scharff, C., & Haesler, S. (2005). An evolutionary perspective on FoxP2: Strictly for the birds? Current Opinion in Neurobiology, 15(6), 694–703.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Schneidman, E. (2016). Towards the design principles of neural population codes. Current Opinion in Neurobiology, 37, 133–140.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Schofield, B. R., & Coomes, D. L. (2006). Pathways from auditory cortex to the cochlear nucleus in guinea pigs. Hearing Research, 216, 81–89.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Shamma, S. A., & Fritz, J. B. (2009). Auditory cortex: Models. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 709–714). Oxford, UK: Academic Press.CrossRefGoogle Scholar
  119. Shepard, K. N., Lin, F. G., Zhao, C. L., Chong, K. K., & Liu, R. C. (2015). Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. The Journal of Neuroscience, 35(6), 2636–2645.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sherman, S. M. (2001). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122–126.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Simonyan, K. (2014). The laryngeal motor cortex: Its organization and connectivity. Current Opinion in Neurobiology, 28, 15–21.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Simonyan, K., & Jürgens, U. (2003). Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Research, 974(1-2), 43–59.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Simonyan, K., & Horwitz, B. (2011). Laryngeal motor cortex and control of speech in humans. The Neuroscientist, 17(2), 197–208.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Singla, S., Dempsey, C., Warren, R., Enikolopov, A. G., & Sawtell, N. B. (2017). A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nature Neuroscience, 20(7), 943–950.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Stiebler, I., Neulist, R., Fichtel, I., & Ehret, G. (1997). The auditory cortex of the house mouse: Left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 181(6), 559–571.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Suta, D., Kvasnák, E., Popelár, J., & Syka, J. (2003). Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. Journal of Neurophysiology, 90(6), 3794–3808.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Suta, D., Popelár, J., & Syka, J. (2008). Coding of communication calls in the subcortical and cortical structures of the auditory system. Physiological Research/Academia Scientiarum Bohemoslovaca, 57(Suppl 3), 149–159.Google Scholar
  128. Suthers, R. A., Fitch, W. T., Fay, R. R., & Popper, A. N. (Eds.). (2016). Vertebrate sound production and acoustic communication (Vol. 53). New York: Springer International Publishing.Google Scholar
  129. Syka, J. (2010). Subcortical responses to species-specific vocalizations. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 99–112). Oxford, UK: Elsevier.Google Scholar
  130. Tabler, J. M., Rigney, M. M., Berman, G. J., Gopalakrishnan, S., et al. (2017). Cilia-mediated hedgehog signaling controls form and function in the mammalian larynx. eLife, 6.Google Scholar
  131. Tanaka, H., & Taniguchi, I. (1991). Responses of medial geniculate neurons to species-specific vocalized sounds in the guinea pig. Japanese Journal of Physiology, 41(6), 817–829.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Ter-Mikaelian, M., Sanes, D. H., & Semple, M. N. (2007). Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. The Journal of Neuroscience, 27(23), 6091–6102.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Ter-Mikaelian, M., Semple, M. N., & Sanes, D. H. (2013). Effects of spectral and temporal disruption on cortical encoding of gerbil vocalizations. Journal of Neurophysiology, 110(5), 1190–1204.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Theunissen, F. E., & Elie, J. E. (2014). Neural processing of natural sounds. Nature Reviews, Neuroscience, 15(6), 355–366.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Tinbergen, N. (1963). On aims and methods of Ethology. Zeitschrift für Tierpsychologie, 20(4), 410–433.CrossRefGoogle Scholar
  136. Tsukano, H., Horie, M., Ohga, S., Takahashi, K., et al. (2017). Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Frontiers in Neural Circuits, 11, 1–8.Google Scholar
  137. de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of Neuroscience, 27(1), 180–189.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wang, X. (2007). Neural coding strategies in auditory cortex. Hearing Research, 229(1-2), 81–93.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wang, X., Merzenich, M. M., Beitel, R., & Schreiner, C. E. (1995). Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: Temporal and spectral characteristics. Journal of Neurophysiology, 74(6), 2685–2706.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wang, X., Qi, Q., Huang, C., Chomiak, T., & Luo, F. (2016). Duration sensitivity of neurons in the primary auditory cortex of albino mouse. Hearing Research, 332, 160–169.PubMedCrossRefPubMedCentralGoogle Scholar
  141. West, C. D. (1985). The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. The Journal of the Acoustical Society of America, 77(3), 1091–1101.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Wigderson, E., Nelken, I., & Yarom, Y. (2016). Early multisensory integration of self and source motion in the auditory system. Proceedings of the National Academy of Sciences of the Unites States of America, 113(29), 8308–8313.CrossRefGoogle Scholar
  143. Wilczynski, W., & Ryan, M. J. (2010). The behavioral neuroscience of anuran social signal processing. Current Opinion in Neurobiology, 20(6), 754–763.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wild, J. M., Li, D., & Eagleton, C. (1997). Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). The Journal of Comparative Neurology, 377, 392–413.PubMedCrossRefGoogle Scholar
  145. Willard, F. H., & Ryugo, D. K. (1983). Anatomy of the central auditory system. In J. F. Willott (Ed.), The auditory psychobiology of the mouse (pp. 201–304). Springfield, MA: Charles C. Thomas.Google Scholar
  146. Winer, J. A. (1992). The functional architecture of the medial geniculate body and the primary auditory cortex. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 222–409). New York: Springer-Verlag.CrossRefGoogle Scholar
  147. Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1-2), 1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Winer, J. A., & Schreiner, C. E. (2005). The central auditory system: A functional analysis. In J. A. Winer & C. E. Schreiner (Eds.), The inferior colliculus (pp. 1–68). New York: Springer Science+Media Publishing.CrossRefGoogle Scholar
  149. Wöhr, M., & Schwarting, R. K. W. (2010). Activation of limbic system structures by replay of ultrasonic vocalization in rats. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 113–124). New York: Elsevier.Google Scholar
  150. Wöhr, M., Oddi, D., & D'Amato, F. R. (2010). Effect of altricial pup ultrasonic vocalization on maternal behavior. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 159–166). New York: Elsevier.Google Scholar
  151. Woolley, S. M. N. (2012). Early experience shapes vocal neural coding and perception in songbirds. Developmental Psychobiology, 54, 612–631.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Woolley, S. M. N., & Portfors, C. V. (2013). Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hearing Research, 305, 45–56.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Xia, Y. F., Qi, Z. H., & Shen, J. X. (2000). Neural representation of sound duration in the inferior colliculus of the mouse. Acta Oto-Laryngologica, 120(5), 638–643.PubMedCrossRefGoogle Scholar
  154. Zhang, S. P., Davis, P. J., Bandler, R., & Carrive, P. (1994). Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. Journal of Neurophysiology, 72(3), 1337–1356.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy and Medical Imaging, and Eisdell Moore CentreUniversity of AucklandAucklandNew Zealand

Personalised recommendations