Advertisement

Hearing in Rodents

  • Micheal L. Dent
  • Laurel A. Screven
  • Anastasiya Kobrina
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 67)

Abstract

Hearing in rodents has been measured using both behavioral and physiological methods. Features of hearing that have been measured in rodents include auditory acuity in quiet and in noise, frequency selectivity and sensitivity, intensity resolution, temporal resolution, and complex sound perception. Generally, and especially for simple tone detection, behavioral thresholds are lower than physiological thresholds. Within behavioral studies, operant experiments using awake, behaving rodents produce lower thresholds than simple reflexive measures. Rodents generally have broader frequency filters than other mammals. Frequency and intensity resolution are similar but slightly elevated relative to other mammals. The few measures of complex sound perception performed to date show that at least some rodents have the capacity to distinguish between spectrotemporal characteristics of acoustic signals for communication. Most studies have typically employed domesticated laboratory rodents rather than wild-caught species, so few attempts have been made to correlate lifestyle and evolutionary history with auditory processing. Nonetheless, a baseline knowledge of hearing abilities in rodents will facilitate experiments on the perception of more complex, natural acoustic stimuli in the future.

Keywords

Audiogram Critical ratio Discrimination Frequency difference limen Intensity difference limen Speech perception Ultrasonic vocalizations 

Notes

Acknowledgments

The work described here was supported by NIH R03DC009483 and R01DC012302 (Dent). This work would not have been possible if not for the significant contributions of Dr. Kelly Radziwon and numerous undergraduate and graduate students in the Dent Laboratory. Thanks to Dr. Amanda Lauer for helpful comments on this chapter.

Compliance with Ethics Requirements

Micheal Dent declares that she has no conflict of interest.

Laurel Screven declares that she has no conflict of interest.

Anastasiya Kobrina declares that she has no conflict of interest.

References

  1. Beach, F. A. (1950). The snark was a boojum. American Psychologist, 5(4), 115–124.CrossRefGoogle Scholar
  2. Begall, S., Burda, H., & Schneider, B. (2004). Hearing in coruros (Spalacopus cyanus): Special audiogram features of a subterranean rodent. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(11), 963–969.PubMedGoogle Scholar
  3. Behrens, D., & Klump, G. M. (2015). Comparison of the sensitivity of prepulse inhibition of the startle reflex and operant conditioning in an auditory intensity difference limen paradigm. Hearing Research, 321(1), 35–44.PubMedCrossRefGoogle Scholar
  4. Birch, L., Warfield, D., Ruben, R., & Mikaelian, D. (1968). Behavioral measurements of pure tone thresholds in normal CBA-J mice. Journal of Auditory Research, 8(1), 459–468.Google Scholar
  5. Blumstein, D. T., & Armitage, K. B. (1997). Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. The American Naturalist, 150(2), 179–200.PubMedCrossRefGoogle Scholar
  6. Blumstein, D. T., & Daniel, J. C. (2004). Yellow-bellied marmots discriminate between the alarm calls of individuals and are more responsive to calls from juveniles. Animal Behaviour, 68(6), 1257–1265.CrossRefGoogle Scholar
  7. Borg, E. (1982). Auditory thresholds in rats of different age and strain. A behavioral and electrophysiological study. Hearing Research, 8(2), 101–115.PubMedCrossRefGoogle Scholar
  8. Brand, A., Urban, R., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology, 84(4), 1790–1799.PubMedCrossRefGoogle Scholar
  9. Brown, C. H., & Sinnott, J. M. (2006). Cross-species comparisons of vocal perception. In S. Greenberg & W. A. Ainsworth (Eds.), Listening to speech: An auditory perspective (pp. 183–201). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  10. Bruckmann, G., & Burda, H. (1997). Hearing in blind subterranean Zambian mole-rats (Cryptomys sp.): Collective behavioural audiogram in a highly social rodent. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 181(1), 83–88.PubMedCrossRefGoogle Scholar
  11. Chambers, A. R., Resnik, J., Yuan, Y., Whitton, J. P., et al. (2016). Central gain restores auditory processing following near-complete cochlear denervation. Neuron, 89(4), 867–879.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cheatham, M., Huynh, K., Gao, J., Zuo, J., & Dallos, P. (2004). Cochlear function in Prestin knockout mice. The Journal of Physiology, 560(3), 821–830.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Church, R. M., Getty, D. J., & Lerner, N. D. (1976). Duration discrimination by rats. Journal of Experimental Psychology: Animal Behavior Processes, 2(4), 303.  https://doi.org/10.1037/0097-7403.2.4.303 PubMedGoogle Scholar
  14. Cooke, J. E., Zhang, H., & Kelly, J. B. (2007). Detection of sinusoidal amplitude modulated sounds: Deficits after bilateral lesions of auditory cortex in the rat. Hearing Research, 231(1), 90–99.PubMedCrossRefGoogle Scholar
  15. Dang, R., Torigoe, D., Suzuki, S., Kikkawa, Y., et al. (2011). Genetic background strongly modifies the severity of symptoms of Hirschsprung disease, but not hearing loss in rats carrying Ednrb sl mutations. PLoS One, 6(9), e24086.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Eddins, A. C., Salvi, R. J., Wang, J., & Powers, N. L. (1998). Threshold-duration functions of chinchilla auditory nerve fibers. Hearing Research, 119(1), 135–141.CrossRefGoogle Scholar
  17. Ehret, G. (1974). Age-dependent hearing loss in normal hearing mice. Naturwissenschaften, 61(11), 506–507.Google Scholar
  18. Ehret, G. (1975). Frequency and intensity difference limens and nonlinearities in the ear of the housemouse (Mus musculus). Journal of Comparative Physiology, 102(4), 321–336.CrossRefGoogle Scholar
  19. Ehret, G. (1976). Temporal auditory summation for pure tones and white noise in the house mouse (Mus musculus). The Journal of the Acoustical Society of America, 59(6), 1421–1427.PubMedCrossRefGoogle Scholar
  20. Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68(4), 208–209.PubMedCrossRefGoogle Scholar
  21. Ehret, G., & Haack, B. (1982). Ultrasound recognition in the house mouse: Key-stimulus configuration and recognition mechanism. Journal of Comparative Physiology, 148(2), 245–251.CrossRefGoogle Scholar
  22. Fay, R. R. (1974). Auditory frequency discrimination in vertebrates. The Journal of the Acoustical Society of America, 56(1), 206–209.PubMedCrossRefGoogle Scholar
  23. Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.Google Scholar
  24. Felsheim, C., & Ostwald, J. (1996). Responses to exponential frequency modulations in the rat inferior colliculus. Hearing Research, 98(1), 137–151.PubMedCrossRefGoogle Scholar
  25. Feng, Y., Wang, J., & Yin, S. (2007). General anesthesia changes gap-evoked auditory responses in guinea pigs. Acta Oto-Laryngologica, 127(2), 143–148.PubMedCrossRefGoogle Scholar
  26. Floody, O. R., & Kilgard, M. P. (2007). Differential reductions in acoustic startle document the discrimination of speech sounds in rats. The Journal of the Acoustical Society of America, 122(4), 1884–1887.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Floody, O. R., Ouda, L., Porter, B. A., & Kilgard, M. P. (2010). Effects of damage to auditory cortex on the discrimination of speech sounds by rats. Physiology and Behavior, 101(2), 260–268.  https://doi.org/10.1016/j.physbeh.2010.05.009 CrossRefPubMedGoogle Scholar
  28. Francis, R. L. (1979). The preyer reflex audiogram of several rodents, and its relation to the "absolute" audiogram in the rat. Journal of Auditory Research, 19(3), 217–233.PubMedGoogle Scholar
  29. Gaese, B. H., & Ostwald, J. (1995). Temporal coding of amplitude and frequency modulation in the rat auditory cortex. European Journal of Neuroscience, 7(3), 438–450.PubMedCrossRefGoogle Scholar
  30. Gaese, B. H., King, I., Felsheim, C., Ostwald, J., & von der Behrens, W. (2006). Discrimination of direction in fast frequency-modulated tones by rats. Journal of the Association for Research in Otolaryngology, 7(1), 48–58.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gaese, B. H., Nowotny, M., & Pilz, P. K. (2009). Acoustic startle and prepulse inhibition in the Mongolian gerbil. Physiology and Behavior, 98(4), 460–466.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Giraudi-Perry, D., Salvi, R., & Henderson, D. (1982). Gap detection in hearing-impaired chinchillas. The Journal of the Acoustical Society of America, 72(5), 1387–1393.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gleich, O., Kittel, M. C., Klump, G. M., & Strutz, J. (2007). Temporal integration in the gerbil: The effects of age, hearing loss and temporally unmodulated and modulated speech-like masker noises. Hearing Research, 224(1), 101–114.PubMedCrossRefGoogle Scholar
  34. Gourevitch, G. (1965). Auditory masking in the rat. The Journal of the Acoustical Society of America, 37(3), 439–443.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hack, M. H. (1971). Auditory intensity discrimination in the rat. Journal of Comparative and Physiological Psychology, 74(2), 315–318.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hall III, J. W., & Grose, J. H. (1990). Comodulation masking release and auditory grouping. The Journal of the Acoustical Society of America, 88(1), 119–125.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Halpern, D. L., & Dallos, P. (1986). Auditory filter shapes in the chinchilla. The Journal of the Acoustical Society of America, 80(3), 765–775.PubMedCrossRefGoogle Scholar
  38. Hamann, I., Gleich, O., Klump, G. M., Kittel, M. C., et al. (2002). Behavioral and evoked-potential thresholds in young and old Mongolian gerbils (Meriones unguiculatus). Hearing Research, 171(1-2), 82–95.PubMedCrossRefGoogle Scholar
  39. Hare, J. F. (1998). Juvenile Richardson's ground squirrels discriminate among individual alarm callers. Animal Behaviour, 55(2), 451–460.PubMedCrossRefGoogle Scholar
  40. Heffner, H., & Masterton, B. (1980). Hearing in glires: Domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. The Journal of the Acoustical Society of America, 68(6), 1584–1599.CrossRefGoogle Scholar
  41. Heffner, H. E., & Heffner, R. S. (1985). Hearing in two cricetid rodents: Wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). Journal of Comparative Psychology, 99(3), 275–288.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Heffner, H. E., & Heffner, R. S. (2001). Behavioral assessment of hearing in mice. In J. F. Willott (Ed.), Handbook of mouse auditory research (pp. 19–30). New York: CRC Press.CrossRefGoogle Scholar
  43. Heffner, H. E., Heffner, R. S., Contos, C., & Ott, T. (1994). Audiogram of the hooded Norway rat. Hearing Research, 73(2), 244–247.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Heffner, R., Heffner, H., & Masterton, B. (1971). Behavioral measurements of absolute and frequency-difference thresholds in guinea pig. The Journal of the Acoustical Society of America, 49(6), 1888–1895.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Heffner, R. S., & Heffner, H. E. (1990). Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hearing Research, 46(3), 239–252.PubMedCrossRefGoogle Scholar
  46. Heffner, R. S., & Heffner, H. E. (1991). Behavioral hearing range of the chinchilla. Hearing Research, 52(1), 13–16.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Heffner, R. S., & Heffner, H. E. (1993). Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. The Journal of Comparative Neurology, 331(3), 418–433.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Heffner, R. S., Heffner, H. E., Contos, C., & Kearns, D. (1994). Hearing in prairie dogs—transition between surface and subterranean rodents. Hearing Research, 73(2), 185–189.Google Scholar
  49. Heffner, R. S., Koay, G., & Heffner, H. E. (2001). Audiograms of five species of rodents: Implications for the evolution of hearing and the perception of pitch. Hearing Research, 157(1-2), 138–152.PubMedCrossRefGoogle Scholar
  50. Henderson, D. (1969). Temporal summation of acoustic signals by the chinchilla. The Journal of the Acoustical Society of America, 46(2), 474–475.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hershenhoren, I., & Nelken, I. (2016). Detection of tones masked by fluctuating noise in rat auditory cortex. Cerebral Cortex, 27(11), 5130–5143.Google Scholar
  52. Holfoth, D. P., Neilans, E. G., & Dent, M. L. (2014). Discrimination of partial from whole ultrasonic vocalizations using a go/no-go task in mice. The Journal of the Acoustical Society of America, 136(6), 3401–3409.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Holmstrom, L. A., Eeuwes, L. B. M., Roberts, P. D., & Portfors, C. V. (2010). Efficient encoding of vocalizations in the auditory midbrain. The Journal of Neuroscience, 30(3), 802–819.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Honma, Y., Tsukano, H., Horie, M., Ohshima, S., et al. (2013). Auditory cortical areas activated by slow frequency-modulated sounds in mice. PLoS One, 8(7), e68113.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jackson, L. L., Heffner, H. E., & Heffner, R. S. (1997). Audiogram of the fox squirrel (Sciurus niger). Journal of Comparative and Physiological Psychology, 111(1), 100–104.Google Scholar
  56. Kelly, J. B. (1970). The effects of lateral lemniscal and neocortical lesions on auditory absolute thresholds and frequency difference thresholds of the rat. Ph.D. dissertation, Vanderbilt University, Nashville, TN. ProQuest Information & LearningGoogle Scholar
  57. Kelly, J. B., & Masterton, B. (1977). Auditory sensitivity of the albino rat. Journal of Comparative and Physiological Psychology, 91(4), 930–936.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kelly, J. B., Cooke, J. E., Gilbride, P. C., Mitchell, C., & Zhang, H. (2006). Behavioral limits of auditory temporal resolution in the rat: Amplitude modulation and duration discrimination. Journal of Comparative Psychology, 120(2), 98–105.PubMedCrossRefPubMedCentralGoogle Scholar
  59. King, J., Insanally, M., Jin, M., Martins, A. R. O., et al. (2015). Rodent auditory perception: Critical band limitations and plasticity. Neuroscience, 296(1), 55–65.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kittel, M., Wagner, E., & Klump, G. M. (2002). An estimate of the auditory-filter bandwidth in the Mongolian gerbil. Hearing Research, 164(1), 69–76.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Klinge, A., & Klump, G. M. (2008). Frequency difference limens of pure tones and harmonics within complex stimuli in Mongolian gerbils and humans. The Journal of the Acoustical Society of America, 125(1), 304–314.CrossRefGoogle Scholar
  62. Klink, K. B., & Klump, G. M. (2004). Duration discrimination in the mouse (Mus musculus). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(12), 1039–1046.PubMedCrossRefGoogle Scholar
  63. Klink, K. B., Dierker, H., Beutelmann, R., & Klump, G. M. (2010). Comodulation masking release determined in the mouse (Mus musculus) using a flanking-band paradigm. Journal of the Association for Research in Otolaryngology, 11(1), 79–88.PubMedCrossRefGoogle Scholar
  64. Koay, G., Heffner, R. S., & Heffner, H. E. (2002). Behavioral audiograms of homozygous med J mutant mice with sodium channel deficiency and unaffected controls. Hearing Research, 171(1), 111–118.PubMedCrossRefGoogle Scholar
  65. Kobayasi, K. I., Usami, A., & Riquimaroux, H. (2012). Behavioral evidence for auditory induction in a species of rodent: Mongolian gerbil (Meriones unguiculatus). The Journal of the Acoustical Society of America, 132(6), 4063–4068.PubMedCrossRefGoogle Scholar
  66. Kobrina, A., & Dent, M. L. (2016). The effects of aging and sex on detection of ultrasonic vocalizations by adult CBA/CaJ mice (Mus musculus). Hearing Research, 341(1), 119–129.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kobrina, A., Toal, K., & Dent, M. L. (2018). Intensity difference limens in adult CBA/CaJ mice (Mus musculus). Behavioural Processes, 148(1), 46–48.PubMedCrossRefGoogle Scholar
  68. Koeppl, J. W., Hoffmann, R. S., & Nadler, C. F. (1978). Pattern analysis of acoustical behavior in four species of ground squirrels. Journal of Mammalogy, 59(4), 677–696.CrossRefGoogle Scholar
  69. Krishna, B. S., & Semple, M. N. (2000). Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of Neurophysiology, 84(1), 255–273.PubMedCrossRefGoogle Scholar
  70. Kuhl, P. K. (1981). Discrimination of speech by nonhuman animals: Basic auditory sensitivities conducive to the perception of speech-sound categories. The Journal of the Acoustical Society of America, 70(2), 240–249.CrossRefGoogle Scholar
  71. Kuhl, P. K., & Miller, J. D. (1975). Speech perception by the chinchilla: Voiced-voiceless distinction in alveolar plosive consonants. Science, 190(4209), 69–72.PubMedCrossRefGoogle Scholar
  72. Kulig, J., & Willott, J. F. (1984). Frequency difference limens of C57BL/6 and DBA/2 mice: Relationship to auditory neuronal response properties and hearing impairment. Hearing Research, 16(2), 169–174.PubMedCrossRefGoogle Scholar
  73. Lauer, A. M., Behrens, D., & Klump, G. (2017). Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential. Neuroscience and Biobehavioral Reviews, 77, 194–208.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lina, I. A., & Lauer, A. M. (2013). Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise. Hearing Research, 298(1-2), 73–79.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Long, G. R., & Clark, W. W. (1984). Detection of frequency and rate modulation by the chinchilla. The Journal of the Acoustical Society of America, 75(4), 1184–1190.PubMedCrossRefGoogle Scholar
  76. Long, G. R., & Miller, J. D. (1981). Tone-on-tone masking in the chinchilla. Hearing Research, 4(3), 279–285.PubMedCrossRefGoogle Scholar
  77. May, B. J., Kimar, S., & Prosen, C. A. (2006). Auditory filter shapes of CBA/CaJ mice: Behavioral assessments. The Journal of the Acoustical Society of America, 120(1), 321–330.PubMedCrossRefGoogle Scholar
  78. McGee, T., Ryan, A., & Dallos, P. (1976). Psychophysical tuning curves of chinchillas. The Journal of the Acoustical Society of America, 60(5), 1146–1150.PubMedCrossRefGoogle Scholar
  79. Miller, J. D. (1964). Auditory sensitivity of the chinchilla in quiet and in noise. The Journal of the Acoustical Society of America, 36(10), 2010.CrossRefGoogle Scholar
  80. Miller, J. D. (1970). Audibility curve of the chinchilla. The Journal of the Acoustical Society of America, 48(2), 513–523.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Mitchell, C., & Fowler, C. (1980). Tuning curves of cochlear and brainstem responses in the guinea pig. The Journal of the Acoustical Society of America, 68(3), 896–900.PubMedCrossRefGoogle Scholar
  82. Muller, M., & Burda, H. (1989). Restricted hearing range in a subterranean rodent, Cryptomys hottentotus. Naturwissenschaften, 76(3), 134–135.PubMedCrossRefGoogle Scholar
  83. Muller, M., von Hunerbein, K., Hoidis, S., & Smolders, J. W. (2005). A physiological place-frequency map of the cochlea in the CBA/J mouse. Hearing Research, 202(1-2), 63–73.PubMedCrossRefGoogle Scholar
  84. Naguib, M. (1997). Use of song amplitude for ranging in Carolina wrens, Thryothorus ludovicianus. Ethology, 103(9), 723–731.CrossRefGoogle Scholar
  85. Nakano, R., Nakagawa, R., Tokimoto, N., & Okanoya, K. (2013). Alarm call discrimination in a social rodent: Adult but not juvenile degu calls induce high vigilance. Journal of Ethology, 31(2), 115–121.CrossRefGoogle Scholar
  86. Neilans, E. G., Holfoth, D. P., Radziwon, K. E., Portfors, C. V., & Dent, M. L. (2014). Discrimination of ultrasonic vocalizations by CBA/CaJ mice is related to spectrotemporal dissimilarity of vocalizations. PLoS One, 9(1), e85405.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nelson, D. A., & Kiester, T. E. (1978). Frequency discrimination in the chinchilla. The Journal of the Acoustical Society of America, 64(1), 114–128.PubMedCrossRefGoogle Scholar
  88. Noriot, E. (1972). Ultrasounds and maternal behavior in small rodents. Developmental Psychobiology, 5(4), 371–387.CrossRefGoogle Scholar
  89. Noto, M., Nishikawa, J., Tateno, T. (2016). An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex. Neuroscience, 318, 58–83.PubMedCrossRefGoogle Scholar
  90. Ohlemiller, K. K., Jones, L. B., Heidbreder, A. F., Clark, W. W., & Miller, J. D. (1999). Voicing judgments by chinchillas trained with a reward paradigm. Behavioural Brain Research, 100(1-2), 185–195.PubMedCrossRefGoogle Scholar
  91. Palombi, P. S., Backoff, P. M., & Caspary, D. M. (2001). Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hearing Research, 153(1), 174–180.CrossRefGoogle Scholar
  92. Panyutina, A. A., Kuznetsov, A. N., Volodin, I. A., Abramov, A. V., & Soldatova, I. B. (2016). A blind climber: The first evidence of ultrasonic echolocation in arboreal mammals. Integrative Zoology, 12(2), 172–184.CrossRefGoogle Scholar
  93. Polak, M., Eshraghi, A. A., Nehme, O., Ahsan, S., et al. (2004). Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session. Journal of Neuroscience Methods, 134(2), 141–149.PubMedCrossRefGoogle Scholar
  94. Popelar, J., Groh, D., Pelánová, J., Canlon, B., & Syka, J. (2006). Age-related changes in cochlear and brainstem auditory functions in Fischer 344 rats. Neurobiology of Aging, 27(3), 490–500.PubMedCrossRefGoogle Scholar
  95. Porter, B. A., Rosenthal, T. R., Ranasinghe, K. G., & Kilgard, M. P. (2011). Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions. Behavioural Brain Research, 219(1), 68–74.PubMedCrossRefGoogle Scholar
  96. Pressnitzer, D., Meddis, R., Delahaye, R., & Winter, I. M. (2001). Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. The Journal of Neuroscience, 21(16), 6377–6386.PubMedCrossRefGoogle Scholar
  97. Prosen, C. A., Petersen, M. R., Moody, D. B., & Stebbins, W. C. (1978). Auditory thresholds and kanamycin-induced hearing loss in the guinea pig assessed by a positive reinforcement procedure. The Journal of the Acoustical Society of America, 63(2), 559–566.PubMedCrossRefGoogle Scholar
  98. Prosen, C. A., Halpern, D. L., & Dallos, P. (1988). Frequency difference limens in normal and sensorineural hearing impaired chinchillas. The Journal of the Acoustical Society of America, 85(3), 1302–1313.CrossRefGoogle Scholar
  99. Prosen, C. A., Dore, D. J., & May, B. J. (2003). The functional age of hearing loss in a mouse model of presbycusis. I. Behavioral assessments. Hearing Research, 183(1), 44–56.PubMedCrossRefGoogle Scholar
  100. Radziwon, K. E., & Dent, M. L. (2014). Frequency difference limens and auditory cue trading in CBA/CaJ mice. Behavioural Processes, 106(1), 74–76.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Radziwon, K. E., June, K. M., Stolzberg, D. J., Xu-Friedman, M. A., et al. (2009). Behaviorally measured audiograms and gap detection thresholds in CBA/CaJ mice. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(10), 961–969.CrossRefGoogle Scholar
  102. Radziwon, K. E., Stolzberg, D. J., Urban, M. E., Bowler, R. A., & Salvi, R. J. (2015). Salicylate-induced hearing loss and gap detection deficits in rats. Frontiers in Neurology, 6, 31.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ralls, K. (1967). Auditory sensitivity in mice: Peromyscus and Mus musculus. Animal Behaviour, 15(1), 123–128.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ranasinghe, K. G., Vrana, W. A., Matney, C. J., & Kilgard, M. P. (2012). Neural mechanisms supporting robust discrimination of spectrally and temporally degraded speech. Journal of the Association for Research in Otolaryngology, 13(4), 527–542.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ryan, A., Dallos, P., & McGee, T. (1979). Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla. The Journal of the Acoustical Society of America, 66(2), 370–378.PubMedCrossRefGoogle Scholar
  106. Salvi, R. J., & Arehole, S. (1985). Gap detection in chinchillas with temporary high-frequency hearing loss. The Journal of the Acoustical Society of America, 77(3), 1173–1177.PubMedCrossRefGoogle Scholar
  107. Salvi, R., Ahroon, W., Perry, J., Gunnarson, A., & Henderson, D. (1982). Comparison of psychophysical and evoked-potential tuning curves in the chinchilla. American Journal of Otolaryngology, 3(6), 408–416.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Saunders, J. C., Dolgin, K. G., & Lowry, L. D. (1980). The maturation of frequency selectivity in C57BL/6J mice studied with auditory evoked response tuning curves. Brain Research, 187(1), 69–79.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Saunders, S. S., Shivapuja, B. G., & Salvi, R. J. (1987). Auditory intensity discrimination in the chinchilla. The Journal of the Acoustical Society of America, 82(5), 1604–1607.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Scholes, C., Palmer, A. R., & Sumner, C. J. (2015). Stream segregation in the anesthetized auditory cortex. Hearing Research, 328(1), 48–58.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Schooneveldt, G. P., & Moore, B. C. (1987). Comodulation masking release (CMR): Effects of signal frequency, flanking-band frequency, masker bandwidth, flanking-band level, and monotonic versus dichotic presentation of the flanking band. The Journal of the Acoustical Society of America, 82(6), 1944–1956.PubMedCrossRefGoogle Scholar
  112. Schulze, H., & Langner, G. (1997). Representation of periodicity pitch in the primary auditory cortex of the Mongolian gerbil. Acta Oto-Laryngologica, 117(Suppl. 532), 89–95.CrossRefGoogle Scholar
  113. Screven, L. A., & Dent, M. L. (2016). Discrimination of frequency-modulated sweeps by laboratory mice. The Journal of the Acoustical Society of America, 137(4), 1481–1487.CrossRefGoogle Scholar
  114. Seaton, W. H., & Trahiotis, C. (1975). Comparison of critical ratios and critical bands in the monaural chinchilla. The Journal of the Acoustical Society of America, 57(1), 193–199.PubMedCrossRefGoogle Scholar
  115. Shannon, R. V., Zheng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270(5234), 303–307.PubMedCrossRefGoogle Scholar
  116. Shofner, W. P. (2014). Perception of degraded speech sounds differs in chinchilla and human listeners. The Journal of the Acoustical Society of America, 135(4), 2065–2077.PubMedCrossRefGoogle Scholar
  117. Shriner, W. M. (1998). Yellow-bellied marmot and golden-mantled ground squirrel responses to heterospecific alarm calls. Animal Behaviour, 55(3), 529–536.PubMedCrossRefGoogle Scholar
  118. Sinnott, J. M., & Mosteller, K. W. (2001). A comparative assessment of speech sound discrimination by the Mongolian gerbil. The Journal of the Acoustical Society of America, 110(4), 1729–1732.PubMedCrossRefGoogle Scholar
  119. Sinnott, J. M., & Mosqueda, S. B. (2003). Effects of aging on speech sound discrimination in the Mongolian gerbil. Ear and Hearing, 24(1), 30–37.PubMedCrossRefGoogle Scholar
  120. Sinnott, J. M., Brown, C. H., & Brown, F. E. (1992). Frequency and intensity discrimination in Mongolian gerbils, African monkeys and humans. Hearing Research, 59(2), 205–212.PubMedCrossRefGoogle Scholar
  121. Smith, J. C. (1976). Responses of adult mice to models of infant calls. Journal of Comparative and Physiological Psychology, 90(12), 1105–1115.CrossRefGoogle Scholar
  122. Syka, J., & Popelar, J. (1988). Hearing threshold shifts from prolonged exposure to noise in guinea pigs. Hearing Research, 3(3), 205–213.CrossRefGoogle Scholar
  123. Syka, J., Raybalko, N., Brozek, G., & Jilek, M. (1996). Auditory frequency and intensity discrimination in pigmented rats. Hearing Research, 100(1-2), 107–113.PubMedCrossRefGoogle Scholar
  124. Syka, J., Rybalko, N., Mazelova, J., & Druga, R. (2002). Gap detection threshold in the rat before and after auditory cortex ablation. Hearing Research, 172(1-2), 151–159.PubMedCrossRefGoogle Scholar
  125. Taberner, A. M., & Liberman, M. C. (2005). Response properties of single auditory nerve fibers in the mouse. Journal of Neurophysiology, 93(1), 557–569.PubMedCrossRefGoogle Scholar
  126. Talwar, S. K., & Gerstein, G. L. (1998). Auditory frequency discrimination in the white rat. Hearing Research, 126(1-2), 135–150.PubMedCrossRefGoogle Scholar
  127. Viemeister, N. (1996). Auditory temporal integration: What is being accumulated? Current Directions in Psychological Science, 5(1), 28–32.CrossRefGoogle Scholar
  128. Wagner, E., Klump, G. M., & Hamann, I. (2003). Gap detection in Mongolian gerbils (Meriones unguiculatus). Hearing Research, 176(1-2), 11–16.PubMedCrossRefGoogle Scholar
  129. Walton, J., Frisina, R., Ison, J., & O'Neill, W. (1997). Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 181(2), 161–176.PubMedCrossRefGoogle Scholar
  130. Wang, J., Van Wijhe, R., Chen, Z., & Yin, S. (2006). Is duration tuning a transient process in the inferior colliculus of guinea pigs? Brain Research, 1114(1), 63–74.Google Scholar
  131. Wetzel, W., Ohl, F. W., Wagner, T., & Scheich, H. (1998a). Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neuroscience Letters, 252(2), 115–118.PubMedCrossRefGoogle Scholar
  132. Wetzel, W., Wagner, T., Ohl, F. W., & Scheich, H. (1998b). Categorical discrimination of direction in frequency-modulated tones by Mongolian gerbils. Behavioral Brain Research, 91(1-2), 29–39.CrossRefGoogle Scholar
  133. Wood, C. C. (1976). Discriminability, response bias, and phoneme categories in discrimination of voice onset time. The Journal of the Acoustical Society of America, 60(6), 1381–1389.PubMedCrossRefGoogle Scholar
  134. Xu, L., Thompson, C. S., & Pfingst, B. E. (2005). Relative contributions of spectral and temporal cues for phoneme recognition. The Journal of the Acoustical Society of America, 117(5), 3255–3267.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yao, J. D., Bremen, P., & Middlebrooks, J. C. (2015). Emergence of spatial stream segregation in the ascending auditory pathway. The Journal of Neuroscience, 35(49), 16199–16212.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yost, W. A., & Shofner, W. P. (2009). Critical bands and critical ratios in animal psychoacoustics: An example using chinchilla data. The Journal of the Acoustical Society of America, 125(1), 315–323.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zheng, Q. Y., Johnson, K. R., & Erway, L. C. (1999). Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hearing Research, 130(1-2), 94–107.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Micheal L. Dent
    • 1
  • Laurel A. Screven
    • 1
  • Anastasiya Kobrina
    • 1
  1. 1.Department of PsychologyUniversity at Buffalo, SUNYBuffaloUSA

Personalised recommendations