Rodent Vocalizations: Adaptations to Physical, Social, and Sexual Factors

  • Kazuo OkanoyaEmail author
  • Laurel A. Screven
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 67)


This chapter introduces representative studies in acoustic communication in rodents. By using rodents as a model in which to study the evolution of vocal communication, researchers are able to utilize their diversity in physical habitats, social complexity, and sexual rituals. The widespread use of rodents as subjects of acoustic communication research is largely because many such species are the most successful mammalian group in terms of speciation. Much attention has been paid to isolation calls, alarm calls, and contact (or signature) calls in several species of rodents, with emphasis on the physical, social, and sexual variables involved in their production. Emergence of song-like vocalizations in both mother-infant contexts and male-female mating contexts are also discussed. Furthermore, the chapter focuses on the degree of plasticity in perception, production, and usage of these vocalizations in relation to the organization of neural structures related to hearing and vocalizations in rodents. Finally, these observations are integrated to suggest a general hypothesis on the evolution of vocal communication in rodents.


Acoustic communication Acoustic environment Animal communication Degu Ground squirrel Mouse Naked mole rat Prairie dog Rat Ultrasonic vocalization Vocal communication 



This work was supported by MEXT/JSPS KAKENHI Grant Number #4903, JP17H06380 to K.O. We thank Dr. Yui Matsumoto for drawing Fig. 2.5.

Compliance with Ethics Requirements

Kazou Okanoya declares he has no conflict of interest.

Laurel A. Screven declares she has no conflict of interest.


  1. Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One, 7(10), e46610.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barfield, R. J., Auerbach, P, Geyer, L. A., & McIntosh, T. K. (1979). Ultrasonic vocalizations in rat sexual behavior. American Zoologist, 19(2), 469–480.CrossRefGoogle Scholar
  4. Barfield, R. J., & Geyer, L. A. (1972). Sexual behavior: Ultrasonic postejaculatory song of the male rat. Science, 176(4041), 1349–1350.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bednářová, R., Hrouzková-Knotková, E., Burda, H., Sedláček, F., & Šumbera, R. (2013). Vocalizations of the giant mole-rat (Fukomys mechowii), a subterranean rodent with the richest vocal repertoire. Bioacoustics, 22(2), 87–107.CrossRefGoogle Scholar
  6. Behbehani, M. M. (1995). Functional characteristics of the midbrain periaqueductal gray. Progress in Neurobiology, 46(6), 575–605.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berryman, J. C. (1976). Guinea pig vocalizations: Their structure, causation and function. Ethology, 41(1), 80–106.Google Scholar
  8. Blanchard, R. J., Blanchard, D. C., Agullana, R., & Weiss, S. M. (1991). Twenty-two kHz alarm cries to presentation of a predator by laboratory rats living in visible burrow systems. Physiology & Behavior, 50(5), 967–972.CrossRefGoogle Scholar
  9. Blumburg, M. S., & Sokoloff, G. (2001). Do infant rats cry? Psychological Review, 108(1), 83–95.CrossRefGoogle Scholar
  10. Blumstein, D. T., & Armitage, K. B. (1997). Alarm calling in yellow-bellied marmots. I. The meaning of situationally specific calls. Animal Behaviour, 53(1), 143–171.CrossRefGoogle Scholar
  11. Blumstein, D. T., & Daniel, J. C. (2004). Yellow-bellied marmots discriminate among the alarm calls of individuals and are more responsive to the calls of juveniles. Animal Behaviour, 68(1), 1257–1265.CrossRefGoogle Scholar
  12. Blumstein, D. T., & Munos, O. (2004). Individual, age and sex-specific information is contained in yellow-bellied marmot alarm calls. Animal Behaviour, 69(1), 353–361.Google Scholar
  13. Blumstein, D. T., & Recapet, C. (2009). The sound of arousal: The addition of novel nonlinearities increases responsiveness in marmot alarm calls. Ethology, 115(11), 1074–1081.CrossRefGoogle Scholar
  14. Bradbury, J. W., & Vehrencamp, S. L. (2012). Principles of animal communication. Sunderland, MA: Sinauer Associates, Inc.Google Scholar
  15. Brudzynski, S. M. (2009). Communication of adult rats by ultrasonic vocalization: Biological, sociobiological, and neuroscience approaches. Institute for Laboratory Animal Research Journal, 50(1), 43–50.CrossRefGoogle Scholar
  16. Brudzynski, S. M. (2014). Social origin of vocal communication in rodents. In G. Witzany (Ed.), Biocommunication of animals (pp. 63–79). New York: Springer.CrossRefGoogle Scholar
  17. Brunelli, S. A., Shair, H. N., & Hofer, M. A. (1994). Hypothermic vocalizations of rat pups (Rattus norvegicus) elicit and direct maternal search behavior. Journal of Comparative Psychology, 108(3), 298–303.PubMedCrossRefGoogle Scholar
  18. Burda, H. (1995). Individual recognition and incest avoidance in eusocial common mole-rats rather than reproductive suppression by parents. Cellular and Molecular Life Sciences, 51(4), 411–413.CrossRefGoogle Scholar
  19. Burgdorf, J., Kroes, R. A., Moskal, J. R., Pfaus, J. G., et al. (2008). Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: Behavioral concomitants, relationship to reward, and self-administration playback. Journal of Comparative Psychology, 122(4), 357–367.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Carter, G. G., Skowronski, M. D., Faure, P. A., & Fenton, B. (2008). Antiphonal calling allows individual discrimination in white-winged vampire bats. Animal Behaviour, 76(4), 1343–1355.CrossRefGoogle Scholar
  21. Catchpole, C., & Slater, P. (2003). Bird song: Biological themes and variations. Cambridge, UK: Cambridge University Press.Google Scholar
  22. Chabout, J., Serreau, P., Ey, E., Bellier, L., et al. (2012). Adult male mice emit context-specific ultrasonic vocalizations that are modulated by prior isolation or group rearing environment. PLoS One, 7(1), e29401.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chabout, J., Sarkar, A., Dunson, D. B., & Jarvis, E. D. (2015). Male mice song syntax depends on social contexts and influences female preferences. Frontiers in Behavioral Neuroscience, 9(1), 76.PubMedPubMedCentralGoogle Scholar
  24. Deacon, T. W. (1998). The symbolic species: The co-evolution of language and the brain. New York: WW Norton & Company.Google Scholar
  25. Di Paolo, E. A. (1997). An investigation into the evolution of communication. Adaptive Behavior, 6(2), 285–324.CrossRefGoogle Scholar
  26. Ehret, G. (2005). Infant rodent ultrasounds—a gate to the understanding of sound communication. Behavior Genetics, 35(1), 19–29.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Ehret, G., & Haack, B. (1981). Categorical perception of mouse pup ultrasound by lactating females. Naturwissenschaften, 68(4), 208–209.PubMedCrossRefGoogle Scholar
  28. Ehret, G., & Haack, B. (1984). Motivation and arousal influence sound-induced maternal pup-retrieving behavior in lactating house mouse. Ethology, 65(1), 25–39.Google Scholar
  29. Endres, T., Widmann, K., & Fendt, M. (2007). Are rats predisposed to learn 22kHz calls as danger-predicting signals? Behavioural Brain Research, 185(2), 69–75.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ficken, M. S., Ficken, R. W., & Witkin, S. R. (1978). Vocal repertoire of the black-capped chickadee. The Auk, 95(1), 34–48.CrossRefGoogle Scholar
  31. Gourbal, B. F., Barthelemy, M., Petit, G., & Gabrion, C. (2004). Spectrographic analysis of the ultrasonic vocalisations of adult male and female BALB/c mice. Naturwissenschaften, 91(8), 381–385.PubMedCrossRefGoogle Scholar
  32. Greene, E., & Meagher, T. (1998). Red squirrels, Tamiasciurus hudsonicus, produce predator-class specific alarm calls. Animal Behaviour, 55(3), 511–518.PubMedCrossRefGoogle Scholar
  33. Grimsley, J. M. S., Sheth, S. Vallabh, N., & Grimsley, C. A. (2016). Contextual modulation of vocal behavior in mouse: Newly identified “mid-frequency” vocalization emitted during restraint. Frontiers in Behavioral Neuroscience, 10(1), 38.PubMedPubMedCentralGoogle Scholar
  34. Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., & Fischer, J. (2009). Female mice respond to male ultrasonic ‘songs’ with approach behavior. Biology Letters, 5(5), 589–592.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hammerschmidt, K., Radyushkin, K., Ehrenreich, H., & Fischer, J. (2012a). The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS One, 7(7), e41133.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hammerschmidt, K., Reisinger, E., Westekemper, K., Ehrenreich, L., et al. (2012b). Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience, 13(1), 40. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hammerschmidt, K., Whelan, G., Eichele, G., & Fischer, J. (2015). Mice lacking the cerebral cortex develop normal song: Insights into the foundations of vocal learning. Scientific Reports, 5(1), 8808.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hashimoto, H., Moritani, N., Aoki-Komori, S., Takana, M. & Saito, T. R. (2004). Comparison of ultrasonic vocalizations emitted by rodent pups. Experimental Animals, 53(5), 409–416.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Heth, G., Frankenberg, E., & Nevo, E. (1986). Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia, 42(11-12), 1287–1289.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hoffmann, F., Mulsolf, K., & Penn, D. J. (2012). Spectrographic analyses reveal signals of individuality and kinship in the ultrasonic courtship vocalizations of wild house mice. Physiology & Behavior, 105(3), 766–771.CrossRefGoogle Scholar
  41. Hoier, S., Pfeifle, C., von Merten, S., & Linnenbrink, M. (2016). Communication at the garden fence: Context dependent vocalization in female house mice. PLoS One, 11(3), e0152255.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Holman, S. D. (1980). Sexually dimorphic, ultrasonic vocalizations of Mongolian gerbils. Behavioral and Neural Biology, 28(2), 183–192.CrossRefGoogle Scholar
  43. Holy, T. E., & Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biology, 3(12), e386.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hunyady, H. (2008). Vocal sounds of the chinchilla. MS Thesis, Bowling Green State Univeristy, OH.!etd.send_file%3Faccession%3Dbgsu1206318183%26disposition%3Dinline (Accessed Feb. 2018)
  45. Inoue, Y., Sinun, W., Yosida, S., & Okanoya, K. (2013). Intergroup and intragroup antiphonal songs in wild male Mueller’s gibbons (Hylobates muelleri). Interaction Studies, 14(1), 24–43.CrossRefGoogle Scholar
  46. Jurgens, U. (1979). Neural control of vocalization in nonhuman primates. In H. D. Steklis & J. Raleigh (Eds.), Neurobiology of social communication in primates: An evolutionary perspective (pp. 11–44). London: Academic Press, Inc.Google Scholar
  47. Jurgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258.CrossRefGoogle Scholar
  48. Kagawa, H., Seki, Y., & Okanoya, K. (2017). Affective valence of neurons in the vicinity of the rat amygdala: Single unit activity in response to a conditioned behavior and vocal sound playback. Behavioural Brain Research, 324(1), 109–114.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kikusui, T., Nakanishi, K., Nakagawa, R., Nagasawa, M., et al. (2011). Cross fostering experiments suggest that mice songs are innate. PLoS One, 6(3), e17721.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kobayasi, K. I., & Riquimaroux, H. (2012). Classification of vocalizations in the Mongolian gerbil, Meriones unguiculatus. The Journal of the Acoustical Society of America, 131(2), 1622–1631.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kondo, N., Watanabe, S., & Izawa, E-I. (2010). A temporal rule in vocal exchange among large-billed crows Corvus macrorhynchos in Japan. Ornithological Science, 9(1), 83–91.CrossRefGoogle Scholar
  52. Lange, S., Burda, H., Wegner, R. E., Dammann, P., et al. (2007). Living in a “stethoscope”: Burrow-acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften, 94(2), 134–138.PubMedCrossRefGoogle Scholar
  53. Litvin, Y., Blanchard, D. C., & Blanchard, R. J. (2007). Rat 22 kHz ultrasonic vocalizations as alarm cries. Behavioural Brain Research, 182(2), 166–172.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Liu, R. C., Miller, K. D., Merzenich, M. M., & Schreiner, C. E. (2003). Acoustic variability and distinguishability among mouse ultrasound vocalizations. The Journal of the Acoustical Society of America, 114(6), 3412–3422.PubMedCrossRefGoogle Scholar
  55. Long, C. (2007). Vocalisations of the degu Octodon degus, a social caviomorph rodent. Bioacoustics, 16(3), 223–244.CrossRefGoogle Scholar
  56. Mahrt, E. J., Agarwal, A., Perkel, D., Portfors, C., Elemans, C. P. H. (2016). Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets. Cell Biology, 26(1), R880–881.Google Scholar
  57. Mahrt, E. J., Perkel, D. J., Tong, L., Rubel, E. W., & Portfors, C. V. (2013). Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. The Journal of Neuroscience, 33(13), 5573–5583.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Marler, P., Evans, C. S., & Hauser, M. D. (1992). Animal signals: Motivational, referential, or both. In: H. Papoušek, U. Jürgens, & M. Papoušek (Eds.), Nonverbal vocal communication: Comparative and developmental approaches (pp. 66–86). Cambridge, UK: Cambridge University PressGoogle Scholar
  59. Matsumoto, Y. K., (2017). Types and functions of ultrasonic vocalizations in adult mice. Ph. D. dissertation. The University of Tokyo, Tokyo, Japan.Google Scholar
  60. Matsumoto, Y. K., & Okanoya, K. (2016). Phase-specific vocalizations of male mice at the initial encounter during the courtship sequence. PLoS One, 11(2), e0147102.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Matsumoto, Y. K., Okanoya, K., & Seki, Y. (2012). Effects of amygdala lesions on male mouse ultrasonic vocalizations and copulatory behaviour. Neuroreport, 23(11), 676–680.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Melchior, H. R. (1971). Characteristics of arctic ground squirrel alarm calls. Oecologia, 7(2), 184–190.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Mendl, M., Burman, O. H., Parker, R. M., & Paul, E. S. (2009). Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Applied Animal Behaviour Science, 118(3), 161–181.CrossRefGoogle Scholar
  64. Moreno-Gómez, F. N., Leon, A., Velásquez, N., & Delano, P. (2015). Individual and sex distinctiveness in bark calls of domestic chinchillas elicited in a distress context. The Journal of the Acoustical Society of America, 138(3), 1614–1622.PubMedCrossRefGoogle Scholar
  65. Morton, E. S. (1977). On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. The American Naturalist, 111(981), 855–869.CrossRefGoogle Scholar
  66. Motomura, N., Shimizu, K., Shimizu, M., Aoki–Komori, S., et al. (2002). A comparative study of isolation-induced ultrasonic vocalization in rodent pups. Experimental Animals, 51(2), 187–190.PubMedCrossRefGoogle Scholar
  67. Muller, C., & Burda, H. (1989). Restricted hearing range in subterranean rodent, Cryptomys hottentotus. Naturwissenschaften, 76(3), 134–135.PubMedCrossRefGoogle Scholar
  68. Nakano, R., Nakagawa, R., Tokimoto, N., & Okanoya, K. (2013). Alarm call discrimination in a social rodent: Adult but not juvenile degu calls induce high vigilance. Journal of Ethology, 31(2), 115–121.CrossRefGoogle Scholar
  69. Neilans, E. G., Holfot, D. P., Radziwon, K. E., & Dent, M. L. (2014). Discrimination of ultrasonic vocalizations by CBA/CaJ mice (Mus musculus) is related to spectrotemporal dissimilarity of vocalizations. PLoS One, 9(1), e85405.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Neunuebel, J. P., Taylor, A. L., Arthur, B. J., & Egnor, S. E. R. (2015). Female mice ultrasonically interact with males during courtship displays. eLife, 4, e06203.PubMedCentralCrossRefGoogle Scholar
  71. Owings, D. H., & Virginia, R. A. (1978). Alarm calls of California ground squirrels (Spermophilus beecheyi). Ethology, 46(1), 58–70.Google Scholar
  72. Panksepp, J., & Burgdorf, J. (1999). Laughing rats? Playful tickling arouses high frequency ultrasonic chirping in young rodents. In S. R. Hameroff, A. W. Kaszniak, & D. J. Chalmers (Eds.), Toward a science of consciousness III (pp. 231–244). Cambridge: The MIT Press.Google Scholar
  73. Panksepp, J. & Burgdorf, J. (2000). 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: Effects of social housing and genetic variables. Behavioural Brain Research, 115(1), 25–38.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Panksepp, J., & Burgdorf, J. (2003). “Laughing” rats and the evolutionary antecedents of human joy? Physiology & Behavior, 79(3), 533–547.CrossRefGoogle Scholar
  75. Parsana, A. J., Li, N., & Brown, T. H. (2012). Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behavioural Brain Research, 226(1), 77–86.PubMedCrossRefGoogle Scholar
  76. Pepper, J. W., Braude, S. H., Lacey, E. A., & Sherman, P. W. (1991). Vocalizations of the naked mole-rat. In P. W. Sherman, J. U. M. Jarvis, & R. D. Alexander (Eds.), The biology of the naked mole-rat (pp. 243–274). Princeton: Princeton University Press.Google Scholar
  77. Perla, B. S., & Slobodchikoff, C. (2002). Habitat structure and alarm call dialects in Gunnison's prairie dog (Cynomys gunnisoni). Behavioral Ecology, 13(6), 844–850.CrossRefGoogle Scholar
  78. Pomerantz, S. M., Nunez, A. A., & Bean, N. J. (1983). Female behavior is affected by male ulrasonic vocalizations in house mice. Physiology & Behavior, 31(1), 91–96.CrossRefGoogle Scholar
  79. Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46(1), 28–34.PubMedPubMedCentralGoogle Scholar
  80. Randall, J. A., & Rogovin, K. A. (2002). Variation in and meaning of alarm calls in a social desert rodent. Ethology, 108(6), 513–527.CrossRefGoogle Scholar
  81. Randall, J. A., McCowan, B., Collins, K. C., Hooper, S. L., & Rogovin, K. (2005). Alarm signals of the great gerbil: Acoustic variation by predator context, sex, age, individual, and family group. The Journal of the Acoustical Society of America, 118(4), 2706–2714.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Reeve, H. K., Westneat, D. F., Noon, W. A., Sherman, P. W., & Aquadro, C. F. (1990). DNA "fingerprinting" reveals high levels of inbreeding in colonies of the eusocial naked mole-rat. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2496–2500.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Riede, T. (2013). Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(4), 213–224.CrossRefGoogle Scholar
  84. Sadananda, M., Wöhr, M., & Schwarting, R. K. (2008). Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differental c-fos expression in rat brain. Neuroscience Letters, 435(1), 17–23.Google Scholar
  85. Saito, Y., Yuki, S., Seki, Y., Kagawa, H., & Okanoya, K. (2016). Cognitive bias in rats evoked by ultrasonic vocalizations suggests emotional contagion. Behavioural Processes, 132(1), 5–11.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Sales, G. & Pye, D. (1974). Ultrasonic communication by animals. Netherlands: Springer-Verlag.CrossRefGoogle Scholar
  87. Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28(4), 1070–1094.CrossRefGoogle Scholar
  88. Sherman, P. W. (1977). Nepotism and the evolution of alarm calls. Science, 197(4310), 1246–1253.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sherman, P. W., & Holmes, W. G. (1985). Kin recognition: Issues and evidence. In B. Holldobler & M. Lindauer (Eds.), Experimental behavioral ecology and sociobiology (pp. 437–460). Cambridge, UK: Cambridge University Press.Google Scholar
  90. Smith, C. C. (1968). The adaptive nature of social organization in the genus of three squirrels Tamiasciurus. Ecological Monographs, 38(1), 31–64.CrossRefGoogle Scholar
  91. Smith, C. C. (1978). Structure and function of the vocalizations of tree squirrels (Tamiasciurus). Journal of Mammalogy, 59(4), 793–808.CrossRefGoogle Scholar
  92. Šuta, D., Popelář, J., Burianová, J., & Syka, J. (2013). Cortical representation of species-specific vocalizations in Guinea pig. PLoS One, 8(6), e65432.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Syka, J., Popelář, J., Kvašnák, E., Šuta, J., & Jilek, M. (1997). Processing of species-specific vocalizations in the inferior colliculus and medial geniculate body of the guinea pig. In J. Syka (Ed.), Acoustical signal processing in the central auditory system (pp. 431–441), Boston: Springer-Verlag.CrossRefGoogle Scholar
  94. Takeuchi, H., & Kawashima, S. (1986). Ultrasonic vocalizations and aggressive behavior in male rats. Physiology & Behavior, 38(4), 545–550.CrossRefGoogle Scholar
  95. Tinbergen, N., & Perdeck, A. C. (1951). On the stimulus situation releasing the begging response in the newly hatched herring gull chick (Larus argentatus argentatus Pont.). Behaviour, 3(1), 1–39.CrossRefGoogle Scholar
  96. Van der Poel, A. M., Noach, E. J. K., & Miczek, K. A. (1989). Temporal patterning of ultrasonic distress calls in the adult rat: Effects of morphine and benzodiazapines. Psychopharmacology, 97(2), 147–148.PubMedCrossRefPubMedCentralGoogle Scholar
  97. von Merten, S., Hoier, S., Pfeifle, C., & Tautz, D. (2014). A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One, 9(5), e97244.CrossRefGoogle Scholar
  98. Whitney, G., Cable, J. R., Stockton, M. D., & Tilson, E. F. (1973). Ultrasonic emissions: Do they facilitate courthip of mice? Journal of Comparative and Physiological Psychology, 84(3), 445–452.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Wilson, D. R., & Hare, J. F. (2004). Animal communication: Ground squirrel uses ultrasonic alarms. Nature, 430(6999), 523–523.PubMedCrossRefGoogle Scholar
  100. Winter, P., Ploog, D., & Latta, J. (1966). Vocal repertoire of the squirrel monkey (Saimiri sciureus), its analysis and significance. Experimental Brain Research, 1(4), 359–384.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wright, J. M., Gourdon, J. C., & Clarke, P. B. S. (2010). Identification of multiple call categores within the rich repertoire of adult rat 50-kHz ultrasonic vocalizatons: Effects of amphetamine and social context. Psychopharmacology, 211(1), 1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Wöhr, M., & Schwarting, R. K. (2007). Ultrasonic communication in rats: Can playback of 50-kHz calls induce approach behavior? PLoS One, 2(12), e1365.
  103. Wöhr, M., & Schwarting, R. K. (2008). Maternal care, isolation-induced infant ultrasonic calling, and their relations to adult anxiety-related behavior in the rat. Behavioral Neuroscience, 122(2), 310–330.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Wöhr, M., & Schwarting, R. K. (2013). Affective communication in rodents: Ultrasonic vocalizations as a tool for research on emotion. Cell and Tissue Research, 354(1), 81–97.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Yosida, S., Kobayasi, K. I., Ikebuchi, M., Ozaki, R., & Okanoya, K. (2007). Antiphonal vocalization of a subterranean rodent, the naked mole-rat (Heterocephalus glaber). Ethology, 113(7), 703–710.CrossRefGoogle Scholar
  106. Yosida, S., & Okanoya, K. (2009). Naked mole-rat is sensitive to social hierarchy encoded in antiphonal vocalization. Ethology, 115(9), 823–831.CrossRefGoogle Scholar
  107. Yuki, S., & Okanoya, K. (2014). Behavioral correlates of 50-kHz ultrasonic vocalizations in rats: Progressive operant discrimination learning reduces frequency modulation and increases overall amplitude. Animal Behavior and Cognition, 1(4), 452–463.CrossRefGoogle Scholar
  108. Zahavi, A. (1975). Mate selection—a selection for a handicap. Journal of Theoretical Biology, 53(1), 205–214.PubMedCrossRefGoogle Scholar
  109. Zhang, S., Davis, P. J., Bandler, R., & Carrive, P. (1994). Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. Journal of Neurophysiology, 72(3), 1337–1356.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Life SciencesThe University of TokyoTokyoJapan
  2. 2.Department of PsychologyUniversity at Buffao, SUNYBuffaloUSA

Personalised recommendations