Advertisement

Toward Multiscale Modeling of Molecular and Biochemical Events Occurring at Fertilization Time in Sea Urchins

  • Harold Moundoyi
  • Josselin Demouy
  • Sophie Le Panse
  • Julia Morales
  • Benoît Sarels
  • Patrick Cormier
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

We review here previous theoretical and experimental works, which aim to model major events that occur at the time of fertilization in the sea urchin. We discuss works that perform experiments and develop hypotheses that link different scales of biological systems such as the intracellular Ca2+ concentration oscillations and the swimming behavior of sperm, the Ca2+ wave propagation and the fertilization membrane elevation of the egg, and the mRNA translational activation and the completion of the first mitotic division of the early embryo. The aim of this review is on one hand, to highlight the value of systems biology for understanding the mechanisms associated with fertilization and early embryonic development in sea urchins. On the other hand, this review attempts to illustrate, for mathematicians and bioinformaticians, the potential that represent these molecular and cellular events for modeling clear physiological processes.

Keywords

Sea urchin Fertilization Sperm swimming Egg activation Ca2+ signaling pathway mRNA translation Systems biology 

Notes

Acknowledgments

We apologize to those whose work was not cited or discussed here because of the broad scope of this review and space limitation. We would like to thank Remi Dumollard (Observatoire Océanologique, 06230 Villefranche-sur-Mer, France) for calcium wave discussions and for proofreading the manuscript and Benoît Perthame (Sorbonne Université, Laboratoire Jacques-Louis Lions, Paris France) for mathematical and modeling approaches discussion. We thank Dr. Gustavo Martinez-Mekler for his permission to use figures from Espinal et al. (2011). Special thanks to Huixin Lu (University of Toronto, Canada) for proofreading and correcting the manuscript. Research in the authors’ laboratories is supported by “La Ligue contre le Cancer (coordination du Grand Ouest (comités Finistère, Côtes d’Armor, Deux-Sèvres, Morbihan),” the “Région Bretagne,” and the “Conseil Général du Finistère”). Brittany Regional Council Research Grant (Région Bretagne, project MoDyst) and the French Ministry of Research through the LABEX “CALSIMLAB” (ANR-11-LABX-0037) for Ph.D. Fellowship to H.M. and the ANR blanche project “KIBORD” (ANR-13-BS01-0004).

References

  1. Alvarez L, Dai L, Friedrich BM, Kashikar ND, Gregor I, Pascal R, Kaupp UB (2012) The rate of change in Ca(2+) concentration controls sperm chemotaxis. J Cell Biol 196:653–663.  https://doi.org/10.1083/jcb.201106096CrossRefPubMedPubMedCentralGoogle Scholar
  2. Angione SL, Oulhen N, Brayboy LM, Tripathi A, Wessel GM (2015) Simple perfusion apparatus for manipulation, tracking, and study of oocytes and embryos. Fertil Steril 103:281–290.e285.  https://doi.org/10.1016/j.fertnstert.2014.09.039CrossRefGoogle Scholar
  3. Arnone MI, Andrikou C, Annunziata R (2016) Echinoderm systems for gene regulatory studies in evolution and development. Curr Opin Genet Dev 39:129–137.  https://doi.org/10.1016/j.gde.2016.05.027CrossRefPubMedGoogle Scholar
  4. Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD (2015) Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519:106–109.  https://doi.org/10.1038/nature13999CrossRefPubMedGoogle Scholar
  5. Belle R, Prigent S, Siegel A, Cormier P (2010) Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network. Mol Reprod Dev 77:257–264.  https://doi.org/10.1002/mrd.21142CrossRefPubMedGoogle Scholar
  6. Belle R, Pluchon PF, Cormier P, Mulner-Lorillon O (2011) Identification of a new isoform of eEF2 whose phosphorylation is required for completion of cell division in sea urchin embryos. Dev Biol 350:476–483.  https://doi.org/10.1016/j.ydbio.2010.12.015CrossRefPubMedGoogle Scholar
  7. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529.  https://doi.org/10.1038/nrm1155CrossRefPubMedGoogle Scholar
  8. Bohmer M, Van Q, Weyand I, Hagen V, Beyermann M, Matsumoto M, Hoshi M, Hildebrand E, Kaupp UB (2005) Ca2+ spikes in the flagellum control chemotactic behavior of sperm. EMBO J 24:2741–2752.  https://doi.org/10.1038/sj.emboj.7600744CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, Mushegian A, Goel M, Morales J, Geneviere AM, Lapraz F, Robertson AJ, Kelkar H, Loza-Coll M, Townley IK, Raisch M, Roux MM, Lepage T, Gache C, McClay DR, Manning G (2006) The sea urchin kinome: a first look. Dev Biol 300:180–193.  https://doi.org/10.1016/j.ydbio.2006.08.074CrossRefPubMedGoogle Scholar
  10. Brandhorst BP (1976) Two-dimensional gel patterns of protein synthesis before and after fertilization of sea urchin eggs. Dev Biol 52:310–317CrossRefPubMedGoogle Scholar
  11. Briggs E, Wessel GM (2006) In the beginning...animal fertilization and sea urchin development. Dev Biol 300:15–26.  https://doi.org/10.1016/j.ydbio.2006.07.014CrossRefPubMedGoogle Scholar
  12. Byrum CA, Walton KD, Robertson AJ, Carbonneau S, Thomason RT, Coffman JA, McClay DR (2006) Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions. Dev Biol 300:194–218.  https://doi.org/10.1016/j.ydbio.2006.08.050CrossRefPubMedPubMedCentralGoogle Scholar
  13. Calzone L, Fages F, Soliman S (2006) BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22:1805–1807.  https://doi.org/10.1093/bioinformatics/btl172CrossRefPubMedGoogle Scholar
  14. Chasse H, Mulner-Lorillon O, Boulben S, Glippa V, Morales J, Cormier P (2016) Cyclin B translation depends on mTOR activity after fertilization in sea urchin embryos. PLoS One 11:e0150318.  https://doi.org/10.1371/journal.pone.0150318CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chasse H, Boulben S, Costache V, Cormier P, Morales J (2017) Analysis of translation using polysome profiling. Nucleic Acids Res 45:e15.  https://doi.org/10.1093/nar/gkw907CrossRefPubMedGoogle Scholar
  16. Cormier P (2017) Translation regulator ballet in meiotic spindle. Cell Cycle 16:733–734.  https://doi.org/10.1080/15384101.2017.1304732CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cormier P, Pyronnet S, Morales J, Mulner-Lorillon O, Sonenberg N, Belle R (2001) eIF4E association with 4E-BP decreases rapidly following fertilization in sea urchin. Dev Biol 232:275–283.  https://doi.org/10.1006/dbio.2001.0206CrossRefPubMedGoogle Scholar
  18. Cormier P, Pyronnet S, Salaun P, Mulner-Lorillon O, Sonenberg N (2003) Cap-dependent translation and control of the cell cycle. Prog Cell Cycle Res 5:469–475PubMedGoogle Scholar
  19. Cormier P, Chassé H, Cosson B, Mulner-Lorillon O, Morales J (2016) Translational control in echinoderms: the calm before the storm. In: Jagus R (ed) Evolution of the protein synthesis machinery and its regulation. Springer, Switzerland, pp 413–434Google Scholar
  20. Costache V, Bilotto S, Laguerre L, Belle R, Cosson B, Cormier P, Morales J (2012) Dephosphorylation of eIF2alpha is essential for protein synthesis increase and cell cycle progression after sea urchin fertilization. Dev Biol 365:303–309.  https://doi.org/10.1016/j.ydbio.2012.03.002CrossRefPubMedGoogle Scholar
  21. Costache V, McDougall A, Dumollard R (2014) Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 450:1175–1181.  https://doi.org/10.1016/J.Bbrc.2014.03.155CrossRefPubMedGoogle Scholar
  22. Darszon A, Guerrero A, Galindo BE, Nishigaki T, Wood CD (2008) Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility. Int J Dev Biol 52:595–606.  https://doi.org/10.1387/ijdb.072550adCrossRefPubMedGoogle Scholar
  23. Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290PubMedGoogle Scholar
  24. Derbès A (1847) Observations sur le mécanisme et les phénomènes qui accompagnent la formation de l’embryon chez l’oursin comestible. Ann Sci Nat Zool 8:19Google Scholar
  25. Desvillettes L, Fellner K (2007) Entropy methods for reaction-diffusion systems. vol dynamical systems and differential equations. Proceedings of the 6th AIMS International Conference, supplGoogle Scholar
  26. Desvillettes L, Fellner K, Tang BQ (2017) Trend to equilibrium for reaction-diffusion systems arising from complex balanced chemical reaction networks. SIAM J Math Anal 49:2666–2709.  https://doi.org/10.1137/16m1073935CrossRefGoogle Scholar
  27. Dube F (1988) Effect of reduced protein synthesis on the cell cycle in sea urchin embryos. J Cell Physiol 137:545–552.  https://doi.org/10.1002/jcp.1041370321CrossRefPubMedGoogle Scholar
  28. Dupont G, Dumollard R (2004) Simulation of calcium waves in ascidian eggs: insights into the origin of the pacemaker sites and the possible nature of the sperm factor. J Cell Sci 117:4313–4323.  https://doi.org/10.1242/jcs.01278CrossRefPubMedGoogle Scholar
  29. Dupont G, Goldbeter A (1994) Properties of intracellular Ca2+ waves generated by a model based on Ca(2+)-induced Ca2+ release. Biophys J 67:2191–2204.  https://doi.org/10.1016/S0006-3495(94)80705-2CrossRefPubMedPubMedCentralGoogle Scholar
  30. Duran AL, Santamaria-Holek I (2014) Multiscale modeling of exocytosis in the fertilization process. J Phys Chem Biophys 4:161.  https://doi.org/10.4172/2161-0398.1000161CrossRefGoogle Scholar
  31. Elia A, Constantinou C, Clemens MJ (2008) Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1. Oncogene 27:811–822.  https://doi.org/10.1038/sj.onc.1210678CrossRefPubMedGoogle Scholar
  32. Epel D (1967) Protein synthesis in sea urchin eggs: a “late” response to fertilization. Proc Natl Acad Sci U S A 57:899–906CrossRefPubMedPubMedCentralGoogle Scholar
  33. Epel D (1990) The initiation of development at fertilization. Cell Differ Dev 29:1–12CrossRefPubMedGoogle Scholar
  34. Espinal J, Aldana M, Guerrero A, Wood C, Darszon A, Martinez-Mekler G (2011) Discrete dynamics model for the speract-activated Ca2+ signaling network relevant to sperm motility. PLoS One 6:e22619.  https://doi.org/10.1371/journal.pone.0022619CrossRefPubMedPubMedCentralGoogle Scholar
  35. Espinal-Enriquez J, Priego-Espinosa DA, Darszon A, Beltran C, Martinez-Mekler G (2017) Network model predicts that CatSper is the main Ca2+ channel in the regulation of sea urchin sperm motility. Sci Rep 7:4236.  https://doi.org/10.1038/s41598-017-03857-9CrossRefPubMedPubMedCentralGoogle Scholar
  36. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396CrossRefPubMedGoogle Scholar
  37. Fernandez-Guerra A, Aze A, Morales J, Mulner-Lorillon O, Cosson B, Cormier P, Bradham C, Adams N, Robertson AJ, Marzluff WF, Coffman JA, Geneviere AM (2006) The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus. Dev Biol 300:238–251.  https://doi.org/10.1016/j.ydbio.2006.09.012CrossRefPubMedGoogle Scholar
  38. Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A (2014) The ever-evolving role of mTOR in translation. Semin Cell Dev Biol 36:102–112.  https://doi.org/10.1016/j.semcdb.2014.09.014CrossRefPubMedGoogle Scholar
  39. Friel DD (1995) [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophys J 68:1752–1766.  https://doi.org/10.1016/S0006-3495(95)80352-8CrossRefPubMedPubMedCentralGoogle Scholar
  40. Galindo BE, Beltran C, Cragoe EJ Jr, Darszon A (2000) Participation of a K(+) channel modulated directly by cGMP in the speract-induced signaling cascade of Strongylocentrotus purpuratus sea urchin sperm. Dev Biol 221:285–294.  https://doi.org/10.1006/dbio.2000.9678CrossRefPubMedGoogle Scholar
  41. Galione A, McDougall A, Busa WB, Willmott N, Gillot I, Whitaker M (1993) Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science 261:348–352CrossRefPubMedGoogle Scholar
  42. Gillespie KM, Bachvaroff TR, Jagus G (2016) Expansion of eIF4E and 4E-BP family members in deuterosmes. In: Hernández G (ed) Evolution of the protein synthesis machinery and its regulation. Springer, Switzerland, pp 165–185Google Scholar
  43. Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12:502–513CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963.  https://doi.org/10.1146/annurev.biochem.68.1.913CrossRefPubMedGoogle Scholar
  45. Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci U S A 87:1461–1465CrossRefPubMedPubMedCentralGoogle Scholar
  46. Gosselin P, Oulhen N, Jam M, Ronzca J, Cormier P, Czjzek M, Cosson B (2011) The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS. Nucleic Acids Res 39:3496–3503.  https://doi.org/10.1093/nar/gkq1306CrossRefPubMedGoogle Scholar
  47. Hafner M, Petzelt C, Nobiling R, Pawley JB, Kramp D, Schatten G (1988) Wave of free calcium at fertilization in the sea urchin egg visualized with fura-2. Cell Motil Cytoskeleton 9:271–277.  https://doi.org/10.1002/cm.970090309CrossRefPubMedGoogle Scholar
  48. Hamaguchi Y, Hiramoto Y (1981) Activation of sea urchin eggs by microinjection of calcium buffers. Exp Cell Res 134:171–179CrossRefPubMedGoogle Scholar
  49. Howard-Ashby M, Materna SC, Brown CT, Tu Q, Oliveri P, Cameron RA, Davidson EH (2006) High regulatory gene use in sea urchin embryogenesis: implications for bilaterian development and evolution. Dev Biol 300:27–34.  https://doi.org/10.1016/j.ydbio.2006.10.016CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127.  https://doi.org/10.1038/nrm2838CrossRefPubMedPubMedCentralGoogle Scholar
  51. Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14:736–745CrossRefPubMedGoogle Scholar
  52. Jaffe LF (2004) A proton-led model of fast calcium waves. Cell Calcium 36:83–87.  https://doi.org/10.1016/j.ceca.2003.12.004CrossRefPubMedGoogle Scholar
  53. Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, Del Llano E, Kubelka M, Susor A (2017) Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle 16:927–939.  https://doi.org/10.1080/15384101.2017.1295178CrossRefPubMedPubMedCentralGoogle Scholar
  54. Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9:770–780.  https://doi.org/10.1038/nrm2503CrossRefPubMedGoogle Scholar
  55. Kuroda R, Kontani K, Kanda Y, Katada T, Nakano T, Satoh Y, Suzuki N, Kuroda H (2001) Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca(2+) transients in fertilization of sea urchin eggs. Development 128:4405–4414PubMedGoogle Scholar
  56. Laurent S, Richard A, Mulner-Lorillon O, Morales J, Flament D, Glippa V, Bourdon J, Gosselin P, Siegel A, Cormier P, Belle R (2014) Modelization of the regulation of protein synthesis following fertilization in sea urchin shows requirement of two processes: a destabilization of eIF4E:4E-BP complex and a great stimulation of the 4E-BP-degradation mechanism, both rapamycin-sensitive. Front Genet 5:117.  https://doi.org/10.3389/fgene.2014.00117CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr (1995) Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem 270:18531–18538CrossRefPubMedGoogle Scholar
  58. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122CrossRefPubMedPubMedCentralGoogle Scholar
  59. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3:707–716CrossRefPubMedGoogle Scholar
  60. Mathews MB, Sonenberg N, Hershey JW (2000) Origins and principles of translational control. In: Sonenberg N, Hershey JW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–31Google Scholar
  61. Mazia D (1937) The release of calcium in Arbacia eggs on fertilization. J Comp Physiol 10:14Google Scholar
  62. McDougall A, Gillot I, Whitaker M (1993) Thimerosal reveals calcium-induced calcium release in unfertilised sea urchin eggs. Zygote 1:35–42CrossRefPubMedGoogle Scholar
  63. Meier-Schellersheim M, Fraser ID, Klauschen F (2009) Multiscale modeling for biologists. Wiley Interdiscip Rev Syst Biol Med 1:4–14.  https://doi.org/10.1002/wsbm.33CrossRefPubMedPubMedCentralGoogle Scholar
  64. Merrick WC (2015) eIF4F: a retrospective. J Biol Chem 290:24091–24099.  https://doi.org/10.1074/jbc.R115.675280CrossRefPubMedPubMedCentralGoogle Scholar
  65. Monnier A, Morales J, Cormier P, Boulben S, Belle R, Mulner-Lorillon O (2001) Protein translation during early cell divisions of sea urchin embryos regulated at the level of polypeptide chain elongation and highly sensitive to natural polyamines. Zygote 9:229–236CrossRefPubMedGoogle Scholar
  66. Morales J, Mulner-Lorillon O, Cosson B, Morin E, Belle R, Bradham CA, Beane WS, Cormier P (2006) Translational control genes in the sea urchin genome. Dev Biol 300:293–307.  https://doi.org/10.1016/j.ydbio.2006.07.036CrossRefPubMedGoogle Scholar
  67. Morgan AJ (2011) Sea urchin eggs in the acid reign. Cell Calcium 50:147–156.  https://doi.org/10.1016/J.Ceca.2010.12.007CrossRefPubMedGoogle Scholar
  68. Morgan AJ, Galione A (2014) Preparation and use of sea urchin egg homogenates. Methods Mol Biol 1128:161–173.  https://doi.org/10.1007/978-1-62703-974-1_10CrossRefPubMedGoogle Scholar
  69. Moundoyi H, Moussa A, Perthame B, Sarels B (2017) Analytical examples of diffusive waves generated by a traveling wave. Appl Anal 96:1596–1615.  https://doi.org/10.1080/00036811.2017.1314463CrossRefGoogle Scholar
  70. Mulner-Lorillon O, Chasse H, Morales J, Belle R, Cormier P (2017) MAPK/ERK activity is required for the successful progression of mitosis in sea urchin embryos. Dev Biol 421:194–203.  https://doi.org/10.1016/j.ydbio.2016.11.018CrossRefPubMedGoogle Scholar
  71. Oulhen N, Salaun P, Cosson B, Cormier P, Morales J (2007) After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E. J Cell Sci 120:425–434.  https://doi.org/10.1242/jcs.03339CrossRefPubMedGoogle Scholar
  72. Oulhen N, Boulben S, Bidinosti M, Morales J, Cormier P, Cosson B (2009) A variant mimicking hyperphosphorylated 4E-BP inhibits protein synthesis in a sea urchin cell-free, cap-dependent translation system. PLoS One 4:e5070.  https://doi.org/10.1371/journal.pone.0005070CrossRefPubMedPubMedCentralGoogle Scholar
  73. Oulhen N, Mulner-Lorillon O, Cormier P (2010) eIF4E-binding proteins are differentially modified after ammonia versus intracellular calcium activation of sea urchin unfertilized eggs. Mol Reprod Dev 77:83–91.  https://doi.org/10.1002/mrd.21110CrossRefPubMedGoogle Scholar
  74. Parrington J, Davis LC, Galione A, Wessel G (2007) Flipping the switch: how a sperm activates the egg at fertilization. Dev Dyn 236:2027–2038.  https://doi.org/10.1002/dvdy.21255CrossRefPubMedGoogle Scholar
  75. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371:762–767.  https://doi.org/10.1038/371762a0CrossRefPubMedGoogle Scholar
  76. Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, Weichenrieder O, Izaurralde E (2015) Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol Cell 57:1074–1087.  https://doi.org/10.1016/j.molcel.2015.01.017CrossRefPubMedGoogle Scholar
  77. Picard V, Mulner-Lorillon O, Bourdon J, Morales J, Cormier P, Siegel A, Belle R (2016) Model of the delayed translation of cyclin B maternal mRNA after sea urchin fertilization. Mol Reprod Dev.  https://doi.org/10.1002/mrd.22746
  78. Poenie M, Alderton J, Tsien RY, Steinhardt RA (1985) Changes of free calcium levels with stages of the cell division cycle. Nature 315:147–149CrossRefPubMedGoogle Scholar
  79. Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234.  https://doi.org/10.1042/BJ20070024CrossRefPubMedGoogle Scholar
  80. Proud CG (2015) Regulation and roles of elongation factor 2 kinase. Biochem Soc Trans 43:328–332.  https://doi.org/10.1042/BST20140323CrossRefPubMedGoogle Scholar
  81. Ramos I, Wessel GM (2013) Calcium pathway machinery at fertilization in echinoderms. Cell Calcium 53:16–23.  https://doi.org/10.1016/j.ceca.2012.11.011CrossRefPubMedGoogle Scholar
  82. Roux MM, Townley IK, Raisch M, Reade A, Bradham C, Humphreys G, Gunaratne HJ, Killian CE, Moy G, Su YH, Ettensohn CA, Wilt F, Vacquier VD, Burke RD, Wessel G, Foltz KR (2006) A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev Biol 300:416–433.  https://doi.org/10.1016/j.ydbio.2006.09.006CrossRefPubMedGoogle Scholar
  83. Runft LL, Jaffe LA, Mehlmann LM (2002) Egg activation at fertilization: where it all begins. Dev Biol 245:237–254.  https://doi.org/10.1006/dbio.2002.0600CrossRefPubMedGoogle Scholar
  84. Salaun P, Pyronnet S, Morales J, Mulner-Lorillon O, Belle R, Sonenberg N, Cormier P (2003) eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. Dev Biol 255:428–439CrossRefPubMedGoogle Scholar
  85. Salaun P, Boulben S, Mulner-Lorillon O, Belle R, Sonenberg N, Morales J, Cormier P (2005) Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos. J Cell Sci 118:1385–1394.  https://doi.org/10.1242/jcs.01716CrossRefPubMedGoogle Scholar
  86. Santella L, Vasilev F, Chun JT (2012) Fertilization in echinoderms. Biochem Biophys Res Commun 425:588–594.  https://doi.org/10.1016/j.bbrc.2012.07.159CrossRefPubMedGoogle Scholar
  87. Sardet C (1984) The ultrastructure of the sea urchin egg cortex isolated before and after fertilization. Dev Biol 105:196–210CrossRefPubMedGoogle Scholar
  88. Sardet C, Roegiers F, Dumollard R, Rouviere C, McDougall A (1998) Calcium waves and oscillations in eggs. Biophys Chem 72:131–140CrossRefPubMedGoogle Scholar
  89. Schuster S, Marhl M, Hofer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355CrossRefPubMedGoogle Scholar
  90. Sea Urchin Genome Sequencing C, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, Angerer LM, Arnone MI, Burgess DR, Burke RD, Coffman JA, Dean M, Elphick MR, Ettensohn CA, Foltz KR, Hamdoun A, Hynes RO, Klein WH, Marzluff W, DR MC, Morris RL, Mushegian A, Rast JP, Smith LC, Thorndyke MC, Vacquier VD, Wessel GM, Wray G, Zhang L, Elsik CG, Ermolaeva O, Hlavina W, Hofmann G, Kitts P, Landrum MJ, Mackey AJ, Maglott D, Panopoulou G, Poustka AJ, Pruitt K, Sapojnikov V, Song X, Souvorov A, Solovyev V, Wei Z, Whittaker CA, Worley K, Durbin KJ, Shen Y, Fedrigo O, Garfield D, Haygood R, Primus A, Satija R, Severson T, Gonzalez-Garay ML, Jackson AR, Milosavljevic A, Tong M, Killian CE, Livingston BT, Wilt FH, Adams N, Belle R, Carbonneau S, Cheung R, Cormier P, Cosson B, Croce J, Fernandez-Guerra A, Geneviere AM, Goel M, Kelkar H, Morales J, Mulner-Lorillon O, Robertson AJ, Goldstone JV, Cole B, Epel D, Gold B, Hahn ME, Howard-Ashby M, Scally M, Stegeman JJ, Allgood EL, Cool J, Judkins KM, McCafferty SS, Musante AM, Obar RA, Rawson AP, Rossetti BJ, Gibbons IR, Hoffman MP, Leone A, Istrail S, Materna SC, Samanta MP, Stolc V, Tongprasit W, Tu Q, Bergeron KF, Brandhorst BP, Whittle J, Berney K, Bottjer DJ, Calestani C, Peterson K, Chow E, Yuan QA, Elhaik E, Graur D, Reese JT, Bosdet I, Heesun S, Marra MA, Schein J, Anderson MK, Brockton V, Buckley KM, Cohen AH, Fugmann SD, Hibino T, Loza-Coll M, Majeske AJ, Messier C, Nair SV, Pancer Z, Terwilliger DP, Agca C, Arboleda E, Chen N, Churcher AM, Hallbook F, Humphrey GW, Idris MM, Kiyama T, Liang S, Mellott D, Mu X, Murray G, Olinski RP, Raible F, Rowe M, Taylor JS, Tessmar-Raible K, Wang D, Wilson KH, Yaguchi S, Gaasterland T, Galindo BE, Gunaratne HJ, Juliano C, Kinukawa M, Moy GW, Neill AT, Nomura M, Raisch M, Reade A, Roux MM, Song JL, Su YH, Townley IK, Voronina E, Wong JL, Amore G, Branno M, Brown ER, Cavalieri V, Duboc V, Duloquin L, Flytzanis C, Gache C, Lapraz F, Lepage T, Locascio A, Martinez P, Matassi G, Matranga V, Range R, Rizzo F, Rottinger E, Beane W, Bradham C, Byrum C, Glenn T, Hussain S, Manning G, Miranda E, Thomason R, Walton K, Wikramanayke A, Wu SY, Xu R, Brown CT, Chen L, Gray RF, Lee PY, Nam J, Oliveri P, Smith J, Muzny D, Bell S, Chacko J, Cree A, Curry S, Davis C, Dinh H, Dugan-Rocha S, Fowler J, Gill R, Hamilton C, Hernandez J, Hines S, Hume J, Jackson L, Jolivet A, Kovar C, Lee S, Lewis L, Miner G, Morgan M, Nazareth LV, Okwuonu G, Parker D, Pu LL, Thorn R, Wright R (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952.  https://doi.org/10.1126/science.1133609CrossRefGoogle Scholar
  91. Song JL, Wong JL, Wessel GM (2006) Oogenesis: single cell development and differentiation. Dev Biol 300:385–405.  https://doi.org/10.1016/j.ydbio.2006.07.041CrossRefPubMedGoogle Scholar
  92. Steinhardt RA, Epel D (1974) Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A 71:1915–1919CrossRefPubMedPubMedCentralGoogle Scholar
  93. Steinhardt R, Zucker R, Schatten G (1977) Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol 58:185–196CrossRefPubMedPubMedCentralGoogle Scholar
  94. Stepicheva NA, Song JL (2014) High throughput microinjections of sea urchin zygotes. J Vis Exp 83:e50841.  https://doi.org/10.3791/50841CrossRefGoogle Scholar
  95. Susor A, Jansova D, Anger M, Kubelka M (2016) Translation in the mammalian oocyte in space and time. Cell Tissue Res 363:69–84.  https://doi.org/10.1007/s00441-015-2269-6CrossRefPubMedGoogle Scholar
  96. Swann K, Lai FA (2016) Egg activation at fertilization by a soluble sperm protein. Physiol Rev 96:127–149.  https://doi.org/10.1152/physrev.00012.2015CrossRefPubMedGoogle Scholar
  97. Terasaki M, Sardet C (1991) Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum. J Cell Biol 115:1031–1037CrossRefPubMedGoogle Scholar
  98. Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6:715–760.  https://doi.org/10.1146/annurev.cb.06.110190.003435CrossRefPubMedGoogle Scholar
  99. Tyson JJ (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc Natl Acad Sci U S A 88:7328–7332CrossRefPubMedPubMedCentralGoogle Scholar
  100. Vacquier VD (1975) The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol 43:62–74CrossRefPubMedGoogle Scholar
  101. Vacquier VD (2011) Laboratory on sea urchin fertilization. Mol Reprod Dev 78:553–564.  https://doi.org/10.1002/mrd.21360CrossRefPubMedGoogle Scholar
  102. Wagenaar EB (1983) The timing of synthesis of proteins required for mitosis in the cell cycle of the sea urchin embryo. Exp Cell Res 144:393–403CrossRefPubMedGoogle Scholar
  103. Wagner J, Fall CP, Hong F, Sims CE, Allbritton NL, Fontanilla RA, Moraru II, Loew LM, Nuccitelli R (2004) A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support. Cell Calcium 35:433–447.  https://doi.org/10.1016/j.ceca.2003.10.009CrossRefPubMedGoogle Scholar
  104. Wang S, Trumble WR, Liao H, Wesson CR, Dunker AK, Kang CH (1998) Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol 5:476–483CrossRefPubMedGoogle Scholar
  105. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88.  https://doi.org/10.1152/physrev.00023.2005CrossRefPubMedPubMedCentralGoogle Scholar
  106. Whitaker MJ, Steinhardt RA (1982) Ionic regulation of egg activation. Q Rev Biophys 15:593–666CrossRefPubMedGoogle Scholar
  107. Wong JL, Wessel GM (2008) Renovation of the egg extracellular matrix at fertilization. Int J Dev Biol 52:545–550.  https://doi.org/10.1387/ijdb.072557jwCrossRefPubMedGoogle Scholar
  108. Yanagiya A, Suyama E, Adachi H, Svitkin YV, Aza-Blanc P, Imataka H, Mikami S, Martineau Y, Ronai ZA, Sonenberg N (2012) Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 46:847–858.  https://doi.org/10.1016/j.molcel.2012.04.004CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Harold Moundoyi
    • 1
    • 2
  • Josselin Demouy
    • 1
    • 3
  • Sophie Le Panse
    • 4
  • Julia Morales
    • 1
  • Benoît Sarels
    • 1
    • 2
  • Patrick Cormier
    • 1
  1. 1.Laboratoire de Biologie Intégrative des Modèles MarinsCNRS UMR 8227, Sorbonne Universités, UPMC Univ. Paris 06RoscoffFrance
  2. 2.Laboratoire Jacques-Louis LionsCNRS UMR 7598, Sorbonne Universités, UPMC Univ. Paris 06ParisFrance
  3. 3.Integrative Biology of Marine OrganismsObservatoire Océanologique, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7232Banyuls-sur-MerFrance
  4. 4.Plateforme d’Imagerie Merimage, CNRS, FR 2424, Sorbonne Universités, UPMC Univ. Paris 06RoscoffFrance

Personalised recommendations