Starfish as a Model System for Analyzing Signal Transduction During Fertilization

  • Emily Wiseman
  • Lauren Bates
  • Altair Dubé
  • David J. CarrollEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


The starfish oocyte and egg offer advantages for use as a model system for signal transduction research. Some of these have been recognized for over a century, including the ease of procuring gametes, in vitro fertilization, and culturing the embryos. New advances, particularly in genomics, have also opened up opportunities for the use of these animals. In this chapter, we give a few examples of the historical use of the starfish for research in cell biology and then describe some new areas in which we believe the starfish can contribute to our understanding of signal transduction—particularly in fertilization.


  1. Angerer LM, Angerer RC (2004) Disruption of gene function using antisense morpholinos. Methods Cell Biol 74:699–711PubMedCrossRefGoogle Scholar
  2. Belton RJ, Adams NL, Foltz KR (2001) Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization. Mol Reprod Dev 305:294–305CrossRefGoogle Scholar
  3. Brayboy LM, Wessel GM (2016) The double-edged sword of the mammalian oocyte – advantages, drawbacks and approaches for basic and clinical analysis at the single cell level. Mol Hum Reprod 22(3):200–207PubMedCrossRefGoogle Scholar
  4. Briggs E, Wessel GM (2006) In the beginning… Animal fertilization and sea urchin development. Dev Biol 300(1):15–26PubMedCrossRefGoogle Scholar
  5. Cameron RA et al (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37(Database):D750–D754PubMedCrossRefGoogle Scholar
  6. Carroll DJ, Hua W (2009) Combining microinjection and immunoblotting to analyze MAP kinase phosphorylation in single starfish oocytes and eggs. Methods Mol Biol 518:57–66PubMedCrossRefGoogle Scholar
  7. Carroll DJ, Jaffe LA (1995) Proteases stimulate fertilization-like responses in starfish eggs. Dev Biol 170(2):690–700PubMedCrossRefGoogle Scholar
  8. Carroll DJ et al (1997) Calcium release at fertilization in starfish eggs is mediated by phospholipase Cgamma. J Cell Biol 138(6):1303–1311PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chalbi M et al (2014) Binding of sperm protein Izumo1 and its egg receptor Juno drives Cd9 accumulation in the intercellular contact area prior to fusion during mammalian fertilization. Development 141(19):3732–3739PubMedCrossRefGoogle Scholar
  10. Chiba K, Kado RT, Jaffe LA (1990) Development of calcium release mechanisms during starfish oocyte maturation. Dev Biol 140(2):300–306PubMedCrossRefGoogle Scholar
  11. Cui M, Lin C-Y, Su Y-H (2017) Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Brief Funct Genomics 16(5):309–318PubMedCrossRefGoogle Scholar
  12. Evans T et al (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396PubMedCrossRefGoogle Scholar
  13. Fol H (1879) Recherches sur la fécondation et le commencement de l’hénogénie chez divers animaux. Mem Soc Phys Hist Nat Genève 26:92–397Google Scholar
  14. Giusti AF, Hoang KM, Foltz KR (1997) Surface localization of the sea urchin egg receptor for sperm. Dev Biol 184(1):10–24PubMedCrossRefGoogle Scholar
  15. Giusti AF, Carroll DJ, Abassi YA, Foltz KR (1999a) Evidence that a starfish egg Src family tyrosine kinase associates with PLC-gamma1 SH2 domains at fertilization. Dev Biol 208(1):189–199PubMedCrossRefGoogle Scholar
  16. Giusti AF, Carroll DJ, Abassi YA, Terasaki M et al (1999b) Requirement of a Src family kinase for initiating calcium release at fertilization in starfish eggs. J Biol Chem 274(41):29318–29322PubMedCrossRefGoogle Scholar
  17. Giusti AF et al (2000) Evidence that fertilization activates starfish eggs by sequential activation of a Src-like kinase and phospholipase cgamma. J Biol Chem 275(22):16788–16794PubMedCrossRefGoogle Scholar
  18. György P et al (1941) Egg-white injury as the result of nonabsorption or inactivation of biotin. Science 93(2420):477–478PubMedCrossRefGoogle Scholar
  19. Hara M et al (2012) Greatwall kinase and cyclin B-Cdk1 are both critical constituents of M-phase-promoting factor. Nat Commun 3:1059PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hasan AKMM et al (2005) Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev Biol 286(2):483–492CrossRefGoogle Scholar
  21. Hiramoto Y (1962) Microinjection of the live spermatozoa into sea urchin eggs. Exp Cell Res 27(3):416–426PubMedCrossRefGoogle Scholar
  22. Hiramoto Y (1974) A method of microinjection. Exp Cell Res 87(2):403–406PubMedCrossRefGoogle Scholar
  23. Hoshi M, Moriyama H, Matsumoto M (2012) Structure of acrosome reaction-inducing substance in the jelly coat of starfish eggs: a mini review. Biochem Biophys Res Commun 425(3):595–598PubMedCrossRefGoogle Scholar
  24. Inoue N (2017) Novel insights into the molecular mechanism of sperm–egg fusion via IZUMO1. J Plant Res 130(3):475–478PubMedCrossRefGoogle Scholar
  25. Jaffe LA, Egbert JR (2017) Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle. Annu Rev Physiol 79:237–260PubMedCrossRefGoogle Scholar
  26. Jaffe LA, Terasaki M (2004) Quantitative microinjection of oocytes, eggs, and embryos. Methods Cell Biol 74:219–242PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jahromi S, Shamsir M (2013) Construction and analysis of the cell surface’s protein network for human sperm-egg interaction. ISRN Bioinform 2013:962760Google Scholar
  28. Kadandale P et al (2005) The egg surface LDL receptor repeat-containing proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditis elegans. Curr Biol 15(24):2222–2229PubMedCrossRefGoogle Scholar
  29. Kalinowski RR et al (2003) A receptor linked to a Gi-family G-protein functions in initiating oocyte maturation in starfish but not frogs. Dev Biol 253(1):139–149PubMedCrossRefGoogle Scholar
  30. Kamei N, Glabe CG (2003) The species-specific egg receptor for sea urchin sperm adhesion is EBR1, a novel ADAMTS protein. Genes Dev 17(20):2502–2507PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kishimoto T (2015) Entry into mitosis: a solution to the decades-long enigma of MPF. Chromosoma 124(4):417–428PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kishimoto T, Kanatani H (1976) Cytoplasmic factor responsible for germinal vesicle breakdown and meiotic maturation in starfish oocyte. Nature 260(5549):321–322PubMedCrossRefGoogle Scholar
  33. Kishimoto T, Hirai S, Kanatani H (1981) Role of germinal vesicle material in producing maturation-promoting factor in starfish oocyte. Dev Biol 81(1):177–181PubMedCrossRefGoogle Scholar
  34. Kishimoto T et al (1982) Generality of the action of various maturation-promoting factors. Exp Cell Res 137(1):121–126PubMedCrossRefGoogle Scholar
  35. Klinovska K, Sebkova N, Dvorakova-hortova K (2014) Sperm-egg fusion: a molecular enigma of mammalian reproduction. Int J Mol Sci 15:10652–10668PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kudtarkar P, Cameron RA (2017) Echinobase: an expanding resource for echinoderm genomic information. Database 2017:bax074PubMedCentralCrossRefGoogle Scholar
  37. Lazaridis T, Masunov A, Gandolfo F (2002) Contributions to the binding free energy of ligands to avidin and streptavidin. Proteins Struct Funct Genet 47(2):194–208PubMedCrossRefGoogle Scholar
  38. Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol 428(24):4749–4764PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lin C-Y, Su Y-H (2016) Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol 409(2):420–428PubMedCrossRefGoogle Scholar
  40. Mabuchi I, Okuno M (1977) The effect of myosin antibody on the division of starfish blastomeres. J Cell Biol 74(1):251–263PubMedPubMedCentralCrossRefGoogle Scholar
  41. Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2):129–145PubMedCrossRefGoogle Scholar
  42. Morin R et al (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45(1):81–94PubMedCrossRefGoogle Scholar
  43. Musacchia F et al (2017) De novo assembly of a transcriptome from the eggs and early embryos of Astropecten aranciacus. PLoS One 12(9):e0184090PubMedPubMedCentralCrossRefGoogle Scholar
  44. NCBI Resource Coordinators (2017) Database resources of the national center for biotechnology information. Nucleic Acids Res 45(D1):D12–D17CrossRefGoogle Scholar
  45. Nurse P, Bissett Y (1981) Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292(5823):558–560PubMedCrossRefGoogle Scholar
  46. O’Neill FJ, Gillett J, Foltz KR (2004) Distinct roles for multiple Src family kinases at fertilization. J Cell Sci 117(Pt 25):6227–6238PubMedCrossRefGoogle Scholar
  47. Ohto U et al (2016) Structure of IZUMO1–JUNO reveals sperm–oocyte recognition during mammalian fertilization. Nature 534(7608):566–569PubMedCrossRefGoogle Scholar
  48. Okumura E et al (2014) Cyclin B–Cdk1 inhibits protein phosphatase PP2A-B55 via a Greatwall kinase–independent mechanism. J Cell Biol 204(6):881–889PubMedPubMedCentralCrossRefGoogle Scholar
  49. Oren-Suissa M, Podbilewicz B (2007) Cell fusion during development. Trends Cell Biol 17(11):537–546PubMedCrossRefGoogle Scholar
  50. Picard A, Labbe J-C, Doree M (1988) Normal embryogenesis occurs in starfish eggs induced to mature by microinjection of cytoplasm containing maturation-promoting factor (MPF). Development 103:575–579Google Scholar
  51. Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598PubMedCrossRefGoogle Scholar
  52. Ramos I, Wessel GM (2013) Calcium pathway machinery at fertilization in echinoderms. Cell Calcium 53(1):16–23PubMedCrossRefGoogle Scholar
  53. Ramos I, Reich A, Wessel GM (2014) Two-pore channels function in calcium regulation in sea star oocytes and embryos. Development 141(23):4598–4609PubMedPubMedCentralCrossRefGoogle Scholar
  54. Rotin D et al (1992) SH2 domains prevent tyrosine dephosphorylation of the EGF receptor: identification of Tyr992 as the high-affinity binding site for SH2 domains of phospholipase C gamma. EMBO J 11(2):559–567PubMedPubMedCentralCrossRefGoogle Scholar
  55. Roux MM et al (2006) A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev Biol 300(1):416–433PubMedCrossRefGoogle Scholar
  56. Roux-Osovitz MM, Foltz KR (2014) Isolation and assessment of signaling proteins from synchronized cultures during egg activation and through the egg-to-embryo transition in sea urchins. Methods Mol Biol 1128:277–294PubMedCrossRefGoogle Scholar
  57. Runft LL et al (2004) Identification of a starfish egg PLC-g that regulates Ca2+ release at fertilization. Dev Biol 269:220–236PubMedCrossRefGoogle Scholar
  58. Sakakibara K et al (2005) Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J Biol Chem 280(15):15029–15037PubMedCrossRefGoogle Scholar
  59. Sato K, Fukami Y, Stith BJ (2006) Signal transduction pathways leading to Ca2+ release in a vertebrate model system: lessons from Xenopus eggs. Semin Cell Dev Biol 17(2):285–292PubMedCrossRefGoogle Scholar
  60. Schroeder TE, Stricker SA (1983) Morphological changes during maturation of starfish oocytes: surface ultrastructure and cortical actin. Dev Biol 98(2):373–384PubMedCrossRefGoogle Scholar
  61. Shevidi S et al (2017) Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev Dyn 246(12):1036–1046PubMedPubMedCentralCrossRefGoogle Scholar
  62. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39PubMedCrossRefGoogle Scholar
  63. Sodergren E et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314(5801):941–952PubMedCrossRefGoogle Scholar
  64. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2(8085):366PubMedCrossRefGoogle Scholar
  65. Strathmann M (1987) Reproduction and development of marine invertebrates of the Northern Pacific Coast. University of Washington, SeattleGoogle Scholar
  66. Stricker SA (1995) Time-lapse confocal imaging of calcium dynamics in starfish embryos. Dev Biol 170(2):496–518PubMedCrossRefGoogle Scholar
  67. Stricker SA, Centonze VE, Melendez RF (1994) Calcium dynamics during starfish oocyte maturation and fertilization. Dev Biol 166(1):34–58PubMedCrossRefGoogle Scholar
  68. Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Philos Trans R Soc Lond Ser B Biol Sci 363(1496):1557–1568CrossRefGoogle Scholar
  69. Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Genetics 3(February):137–144PubMedGoogle Scholar
  70. Tilney LG et al (1973) The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol 59(1):109–126PubMedPubMedCentralCrossRefGoogle Scholar
  71. Vacquier VD (2012) The quest for the sea urchin egg receptor for sperm. Biochem Biophys Res Commun 425(3):583–587PubMedCrossRefGoogle Scholar
  72. Vacquier VD, Moy GW (1977) Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Cell Biol 74(6):2456–2460Google Scholar
  73. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wessel GM, Reich AM, Klatsky PC (2010) Use of sea stars to study basic reproductive processes. Syst Biol Reprod Med 56(3):236–245PubMedPubMedCentralCrossRefGoogle Scholar
  75. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86(1):25–88PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wong JL et al (2007) Membrane hemifusion is a stable intermediate of exocytosis. Dev Cell 12(4):653–659PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emily Wiseman
    • 1
  • Lauren Bates
    • 1
  • Altair Dubé
    • 1
  • David J. Carroll
    • 1
    Email author
  1. 1.Department of Biological SciencesFlorida Institute of TechnologyMelbourneUSA

Personalised recommendations