Advertisement

Structures and Composition of the Crab Carapace: An Archetypal Material in Biomimetic Mechanical Design

  • Parvez Alam
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

The structures and composition of crab carapaces are of interest to biomimetic designers and materials scientists as they are hierarchically optimised to dissipate fracture energies through molecular to macroscopic length scales. At each length scale, mechanical energy is absorbed and redirected, circumventing thus catastrophic fracture through the carapace cross-section on impact. The objective of this section is to elucidate the structural, chemical and compositional makeup of crab carapaces, to provide links between their architectures and mechanical properties, and to discuss highlight papers where attempts have been made to mimic the structure-property characteristics of crab carapaces in modern engineering composites.

References

  1. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralisation. Adv Mater 15:959–970CrossRefGoogle Scholar
  2. Aizenberg J, Lambert G, Weiner S, Addadi L (2002) Factors involved in the formation of amorphous crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39CrossRefPubMedGoogle Scholar
  3. Alam P (2014a) Structural organisation and biomimesis of nature’s polymer composites. In: Laske S (ed) New developments in polymer composites research. Nova Science Publishers, New York, pp 325–379Google Scholar
  4. Alam P (2014b) Protein unfolding versus beta-sheet separation in spider-silk nanocrystals. Adv Nat Sci Nanosci Nanotechnol 5:015015(6)CrossRefGoogle Scholar
  5. Alam P (2015a) Mechanical properties of bio-nanostructured materials. In: Aliofkhazraei M (ed) Handbook of mechanical nanostructuring. Wiley-VCH, WeinheimGoogle Scholar
  6. Alam P (2015b) Biomimetic composite materials inspired by wood. In: Ansell MP (ed) Wood composites. Woodhead Publishing, Cambridge, pp. 357–394Google Scholar
  7. Alam P, Alam LP (2017) Biological stick-slip mechanisms: what impact does this have on materials mechanics and biomimetic design? Proceedings: Marquis International Symposium and Round Table, Cancun, Mexico, 22–26 Oct 2017Google Scholar
  8. Apichattrabut T, Ravi-Chandar K (2006) Helicoidal composites. Mech Adv Mater Struct 13:61–67CrossRefGoogle Scholar
  9. Bentov S, Erez J (2006) Impact of biomineralisation processes on the Mg content of foraminiferal shells: a biological perspective. Geomchem Geophys Geosyst 7:Q01P08Google Scholar
  10. Bentov S, Zaslansky P, Al-Sawalmih A, Masic A, Fratzl P, Sagi A, Berman A, Aichmayer B (2012) Enamel-like apatite crown covering amorphous mineral in a crayfish mandible. Nat Commun 3:839CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bentov S, Abehsera S, Sagi A (2016) The mineralised exoskeletons of crystaceans. In: Cohen E, Moussian B (eds) Extracellular composite matrices in arthropods. Springer International Publishing, SwitzerlandGoogle Scholar
  12. Bouligand Y (1965a) Sur une architecture torsadée répandue dans de nombreuses cuticles d’Arthropodes. Acad Sci 261:3665–3668Google Scholar
  13. Bouligand Y (1965b) Sur une disposition fibrillaire torsadée commune à plusieurs structures biologiques. Acad Sci 262:4864–4867Google Scholar
  14. Bouligand Y (1966a) La géometrie des constituants cuticulaires chez les crabs à l’échelle des ultrastructures. In: Uyeda R (ed) Proceedings: 6th International Congress on Electron Microscopy, vol 2, Tokyo, pp 577–578Google Scholar
  15. Bouligand Y (1966b) La microarchitecture des carapacesd de crabe. J Microsc 5:34aGoogle Scholar
  16. Bouligand Y (1970) Aspects ultrastructuraux de la calcification chez les crabs. Proceedings: 7th International Congress on Electron Microscopy, Grenoble, pp 105–106Google Scholar
  17. Bouligand Y (1971) Les orientations fibrillaires dans le squelette des arthropods. I. L’example des crabs, l’arrangement torsade des strates. J Microsc 11:441–472Google Scholar
  18. Chen B, Peng X, Cai C, Niu H, Wu X (2006) Helcoidal microstructure of Scarabaei cuticle and biomimetic research. Mater Sci Eng A 423:237–242CrossRefGoogle Scholar
  19. Chen PY, Lin AYM, McKittrick J, Meyers MA (2008a) Structure and mechanical properties of crab exoskeletons. Acta Biomater 4:587–596CrossRefPubMedGoogle Scholar
  20. Chen PY, Lin AYM, Lin YS, Seki Y, Peyras J, Olevsky EA, Meyers MA, McKittrick J (2008b) Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 1:208–226CrossRefPubMedGoogle Scholar
  21. Cheng L, Thomas A, Glancey JL, Karlsson AL (2011) Mechanical behaviour of bioinspired laminated composites. Compos Part A 42:211–220CrossRefGoogle Scholar
  22. Cranford SW, Buehler MJ (2012) Biomateriomics. Springer International Pubishing AG, Springer-Nature, ChamCrossRefGoogle Scholar
  23. Currey JD, Nash A, Bonfield W (1982) Calcified cuticle in the stomatopod smashing limb. J Mater Sci 17:1939–1944CrossRefGoogle Scholar
  24. Dillman R (2005) Early pattern of calcification in the dorsal carapace of the blue crab Callinectes sapidus. J Morphol 263:356–374CrossRefGoogle Scholar
  25. Drach P (1939) Mue et cycle díntermue chez les crustaces decapodes. Ann Inst Oceanogr 19:103–391Google Scholar
  26. Erjavec M (2011) Mechanical properties of cellular materials. University of Ljubljana, Faculty of Mathematics and PhysicsGoogle Scholar
  27. Espinosa HD, Juster AL, Latourte FJ, Loh OY, Gregoire D, Zavattieri PD (2011) Tablet level origin of toughening in abaolone shells and translation to synthetic composite materials. Nat Commun 2:173CrossRefPubMedGoogle Scholar
  28. Fabritius HO, Ziegler A, Friak M, Nikolov S, Huber J, Seidl BHM, Ruangchai S, Alagboso FI, Karsten S, Lu J, Janus AM, Petrov M, Zhu LF, Hemzalova P, Hild S, Raabe D, Neugebauer J (2016) Functional adaptation of crutacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study. Bioinspir Biomim 11:055006CrossRefPubMedGoogle Scholar
  29. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusc shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  30. Finnemore A, Cunha P, Shean T, Vignolini S, Guldin S, Oyen M, Steiner U (2012) Biomimetic layer-by-layer assembly of artificial nacre. Nat Commun 3:966CrossRefPubMedGoogle Scholar
  31. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334CrossRefGoogle Scholar
  32. Giraud-Guille MM (1984) Fine structure of the chitin-protein system in the crab cuticle. Tissue Cell 16:75–92CrossRefPubMedGoogle Scholar
  33. Green JP, Neff MR (1972) A survey of the fine structure of the integument of the fiddler crab. Tissue Cell 4:137–171CrossRefPubMedGoogle Scholar
  34. Greenway P (1985) Calcium balance and moulting in the Crustacea. Biol Rev 60:425–454CrossRefGoogle Scholar
  35. Gruber P, Bruckner D, Hellmich C, Schmiedmeyer HB, Stachelberger H, Gebeschuber IC (2011) Biomimetics—materials, structures and processes. Springer, HeidelbergCrossRefGoogle Scholar
  36. Grunenfelder LK, Herrera S, Kisailus D (2014a) Crustacean-derived biomimetic components and nanostructured composites. Small (16):3207–3232Google Scholar
  37. Grunenfelder LK, Suksangpanya N, Salinas C, Milliron G, Yaraghi N, Herrera S, Evans-Lutterodt K, Nutt SR, Zavattieri P, Kisailus D (2014b) Bio-inspired impact resistant composites. Acta Biomater 10:3997–4008CrossRefPubMedGoogle Scholar
  38. Heberling F, Bosbach D, Eckhart JD, Fischer U, Glowacky J, Haist M, Kramar U, Loos S, Muller HS, Neumann T, Pust C, Schafer T, Stelling J, Ukrainczyk M, Vinograd V, Vucak M, Winkler B (2014) Reactivity of the calcite-water interface, from molecular scale processes to geochemical engineering. Appl Geochem 45:158–190CrossRefGoogle Scholar
  39. Hegdahl T, Gustavsen F, Silness J (1977a) The structure and mineralisation of the carapace of the crab (Cancer pagurus L.)—3. The epicuticle. Zool Scr 6:215–220CrossRefGoogle Scholar
  40. Hegdahl T, Gustavsen F, Silness J (1977b) The structure and mineralisation of the carapace of the crab (Cancer pagurus L.)—2. The exocuticle. Zool Scr 6:101–105CrossRefGoogle Scholar
  41. Hegdahl T, Gustavsen F, Silness J (1977c) The structure and mineralisation of the carapace of the crab (Cancer pagurus L.)—1. The endocuticle. Zool Scr 6:89–99Google Scholar
  42. Hepburn HR, Joffe I, Green N, Nelson KJ (1975) Mechanical properties of a crab shell. Comp Biochem Physiol 50A:551–554CrossRefGoogle Scholar
  43. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513CrossRefGoogle Scholar
  44. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRefPubMedGoogle Scholar
  45. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford. ISBN: 9780195049770Google Scholar
  46. Mangum CP, Defur PI, Fields JHA, Henry RP, Kormanik GA, McMahon BR, Ricci J, Towle DW, Wheatly MG (1985) Physiology of the blue crab Callinectes sapidus Rathbun during a molt. National symposium on the soft-shelled blue crab fishery, 12–13 Feb, pp 1–2Google Scholar
  47. Mrak P, Bogataj U, Stru J, Znidarsic N (2017) Cuticle morphogenesis in crustacean embryonic and postembryonic stages. Arthropod Struct Dev 46:77–95CrossRefPubMedGoogle Scholar
  48. Murr LE (2014) Examples of natural composites and composite structures. In: Murr LE (ed) Handbook of materials structures, properties, processing and performance. Springer International Publishing AG, ChamGoogle Scholar
  49. Naleway SE, Taylor JRA, Porter MM, Meyers MA, McKittrick J (2016) Structure and mechanical properties of selected protective systems in marine organisms. Mater Sci Eng C 59:1143–1167CrossRefGoogle Scholar
  50. Osman TM, Hassan HA, Lewandowski JJ (2008) Interface effects on the quasi-static and impact toughness of discontinuously reinforced aluminium laminates. Metall Mater Trans A 39:1993–2006CrossRefGoogle Scholar
  51. Politi Y, Catchelor DR, Zaslansky P, Chmelka BF, Weaver JC, Sagi I, Weiner S, Addadi L (2010) Role of magnesium ion in the stabilisation of biogenic amorphous calcium carbonate: a structure-function investigation. Chem Mater 22:161–166CrossRefGoogle Scholar
  52. Priester C, Dillaman RM, Gay DM (2005) Ultrastructure, histochemistry, and mineralisation patterns in the ecdysial suture of the blue crab Callinectes sapidus. Microsc Microanal 11:479–499CrossRefPubMedGoogle Scholar
  53. Ravi-Chandar K (2011) Design optimisation and characterisation of helicoidal composites with enhanced impact resistance. Army Research OfficeGoogle Scholar
  54. Raz S, Hamilton PC, Wilt FH, Weiner S, Addadi L (2003) The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilisation. Adv Funct Mater 13:480–486CrossRefGoogle Scholar
  55. Sanka I, Suyono EA, Rivero-Muller A, Alam P (2016) Carapace surface architectures facilitate camouflage of the decorator crab Tiarinia cornigera. Acta Biomater 41:52–59CrossRefPubMedGoogle Scholar
  56. Sarikaya M (1994) An introduction to biomimetics: a structural viewpoint. Microsc Res Tech 27:360–375CrossRefPubMedGoogle Scholar
  57. Simkiss K (1975) Bone and biomineralisation. Edward Arnold, LondonGoogle Scholar
  58. Sullivan T, McGuinness K, O Connor NE, Regan F (2014) Characterisation and anti-settlement aspects of surface micro-architectures from Cancer pagurus. Bioinspir Biomim 9:046003CrossRefPubMedGoogle Scholar
  59. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454–462CrossRefPubMedGoogle Scholar
  60. Travis DF (1963) Structural features of mineralisation from tissue to macromolecular levels of organisation in the decapod crustacea. Ann N Y Acad Sci 109:177–245CrossRefPubMedGoogle Scholar
  61. Wang J, Cheng Q, Tang Z (2012) Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem Soc Rev 41:945–1404CrossRefGoogle Scholar
  62. Wegst UGK, Ashby MF (2004) The mechanical efficiency of natural materials. Philos Mag 84:2167–2181CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Materials and ProcessesThe University of EdinburghEdinburghUK

Personalised recommendations