The Crown-of-Thorns Starfish: From Coral Reef Plague to Model System

  • Kenneth W. BaughmanEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


Acanthaster planci, commonly known as the “crown-of-thorns starfish” (COTS) are famous for decimating coral reefs, yet the unique features of the COTS genome make the starfish a useful system for genomic and evolutionary developmental research. The COTS genome assembly is an order of magnitude more highly contiguous than other recently sequenced echinoderm genome assemblies. The high resolution of the COTS assembly is likely related to low heterozygosity resulting from historical population dynamics and possibly a recent population expansion. The high-resolution genome assembly is biologically meaningful, as confirmed by the discovery of several intact gene clusters. Therefore, the COTS genome is an ideal testing ground for new genomic technologies and bioinformatics tools.


  1. Baughman KW, McDougall C, Cummins SF et al (2014) Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci. Genesis 52:952–958. CrossRefPubMedGoogle Scholar
  2. Cameron RA, Kudtarkar P, Gordon SM et al (2015) Do echinoderm genomes measure up? Mar Genomics 22:1–9. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carroll SB, Grenier JK, Weatherbee SD (2005) From DNA to diversity: molecular genetics and the evolution of animal design, 2nd edn. Blackwell Publishing, Malden, MAGoogle Scholar
  4. Chesher RH (1969) Destruction of Pacific corals by the sea star Acanthaster planci. Science 165:280–283CrossRefPubMedGoogle Scholar
  5. Davidson EH (1997) Evolutionary biology. Insights from the echinoderms. Nature 389:679–680. CrossRefPubMedGoogle Scholar
  6. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800CrossRefPubMedGoogle Scholar
  7. De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132:185–195. CrossRefPubMedPubMedCentralGoogle Scholar
  8. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) From the cover: The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999. CrossRefPubMedGoogle Scholar
  9. Funahashi A, Matsuoka Y, Jouraku A et al (2017) CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96:1254–1265. CrossRefGoogle Scholar
  10. Hall MR, Kocot KM, Baughman KW et al (2017) The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 544:231–234. CrossRefPubMedGoogle Scholar
  11. Haszpruner G, Spies M (2014) An integrative approach to the taxonomy of the crown-of-thorns starfish species group (Asteroidea: Acanthaster): a review of names and comparison to recent molecular data. Zootaxa 3841:271–284. doi:
  12. Holland ND, Holland LZ, Holland PWH (2015) Scenarios for the making of vertebrates. Nature 520:450–455. CrossRefPubMedGoogle Scholar
  13. Ihama Y, Fukasawa M, Ninomiya K et al (2014) Anaphylactic shock caused by sting of crown-of-thorns starfish (Acanthaster planci). Forensic Sci Int 236:e5–e8. CrossRefPubMedGoogle Scholar
  14. Jaffe LA (1993) Oocyte maturation in starfish is mediated by the beta gamma-subunit complex of a G-protein. J Cell Biol 121:775–783. CrossRefPubMedGoogle Scholar
  15. Kanatani H (1964) Spawning of starfish: action of gamete-shedding substance obtained from radial nerves. Science 146:1177–1179CrossRefPubMedGoogle Scholar
  16. Kirschner MW, Gerhart JC, Norton J (2006) The plausibility of life: resolving Darwin’s dilemma. Yale University Press, New Haven, , CTGoogle Scholar
  17. Kishimoto T (2011) A primer on meiotic resumption in starfish oocytes: The proposed signaling pathway triggered by maturation-inducing hormone. Mol Reprod Dev 78:704–707. CrossRefPubMedGoogle Scholar
  18. Kishimoto T (2015) Entry into mitosis: a solution to the decades-long enigma of MPF. Chromosoma 124(4):417–428. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Le Novère N, Hucka M, Mi H et al (2009) The systems biology graphical notation. Nat Biotechnol 27:735–741. CrossRefPubMedGoogle Scholar
  20. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570CrossRefPubMedGoogle Scholar
  21. Long KA, Nossa CW, Sewell MA et al (2016) Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis. Gigascience 5:20–24. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lowe CJ, Clarke DN, Medeiros DM et al (2015) The deuterostome context of chordate origins. Nature 520:456–465. CrossRefPubMedGoogle Scholar
  23. Lucas JS, Jones MM (1976) Hybrid crown-of-thorns starfish (Acanthaster planci X A. brevispinus) reared to maturity in the laboratory. Nature 263:409–412. CrossRefPubMedGoogle Scholar
  24. McClay DR (2011) Evolutionary crossroads in developmental biology: sea urchins. Development 138:2639–2648. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mooi R, David B (2008) Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Annu Rev Ecol Evol Syst 39:43–62. CrossRefGoogle Scholar
  26. Moore RJ (1978) Is Acanthaster planci an r-strategist? Nature 271:56–57. CrossRefGoogle Scholar
  27. Moran PJ (1988) The Acanthaster phenomenon. Australian Institute of Marine Science, Townsville, QLDGoogle Scholar
  28. Okumura E, Fukuhara T, Yoshida H et al (2002) Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition. Nat Cell Biol 4:111–116. CrossRefPubMedGoogle Scholar
  29. Pendleton M, Sebra R, Pang AWC et al (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat Methods 12:780–786. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Peter IS, Davidson EH (2010) The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev Biol 340:188–199. CrossRefPubMedGoogle Scholar
  31. Peter I, Davidson EH (2015) Genomic control process: development and evolution. Academic Press, Waltham, MAGoogle Scholar
  32. Putnam NH, O’Connell BL, Stites JC et al (2016) Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res 26:342–350. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sapp J (1999) What is natural? Oxford University Press, OxfordGoogle Scholar
  34. Satoh N (2016) Chordate origins and evolution: the molecular evolutionary road to vertebrates. Academic Press, Waltham, MAGoogle Scholar
  35. Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science 314:941–952. CrossRefPubMedCentralGoogle Scholar
  36. Simakov O, Kawashima T, Marletaz F et al (2015) Hemichordate genomes and deuterostome origins. Nature 527:459–465. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Walbran PD, Henderson RA, Jull AJ, Head MJ (1989) Evidence FROM Sediments of long-term Acanthaster planci predation on corals of the Great Barrier Reef. Science 245:847–850. CrossRefPubMedGoogle Scholar
  38. Yamaguchi M (1986) Acanthaster planci infestations of reefs and coral assemblages in Japan: a retrospective analysis of control efforts. Coral Reefs 5:23–30CrossRefGoogle Scholar
  39. Zhang X, Sun L, Yuan J et al (2017) The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol 15:e2003790–e2003731. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan

Personalised recommendations