Advertisement

These Colors Don’t Run: Regulation of Pigment—Biosynthesis in Echinoderms

  • Cristina Calestani
  • Gary M. Wessel
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

Pigment production is an important biological process throughout the tree of life. Some pigments function for collecting light energy, or for visual identification, while others have dramatic antimicrobial functions, or camouflage capabilities. The functions of these pigments and their biosynthesis are of great interest if only because of their diversity. The biochemistry of echinoderm pigmentation has been intensively studied for many years, and with more recent technologies, the origin and functions of these pigments are being exposed. Here we summarize the major pigment types in biology and emphasize the status of the field in echinoderms, taking full advantage of the new genomic and technologic resources for studying these important animals and their beautiful pigmentation.

Keywords

Melanin Carotenoids Porphyrins Quinones Polyketides Polyketide synthase CRISPR/Cas9 Echinoderm Sea urchin 

References

  1. Beeble A, Calestani C (2012) Expression pattern of polyketide synthase-2 during sea urchin development. Gene Expr Patterns 12:7–10CrossRefPubMedGoogle Scholar
  2. Calestani C, Rogers DJ (2010) Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase. Dev Biol 340:249–255CrossRefPubMedGoogle Scholar
  3. Calestani C, Rast JP, Davidson EH (2003) Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening. Development 130:4587–4596CrossRefPubMedGoogle Scholar
  4. Cameron RA, Samanta M, Yuan A, He D, Davidson E (2009) SpBase: the sea urchin genome database and web site. Nucleic Acids Res 37:D750–D754CrossRefPubMedGoogle Scholar
  5. Castoe TA, Stephens T, Noonan BP, Calestani C (2007) A novel group of type I polyketide synthases (PKS) in animals and the complex phylogenomics of PKSs. Gene 392:47–58CrossRefPubMedGoogle Scholar
  6. Croce JC, McClay DR (2010) Dynamics of Delta/notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137:83–91CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fontaine AR (1962) Colours of Ophiocomina nigra (Abildgaard).2. Occurrence of melanin and fluorescent pigments. J Mar Biol Assoc UK 42:9–31CrossRefGoogle Scholar
  8. Fox DL, Hopkins TS (1966) The comparative biochemistry of pigments. In: Boolootian RA (ed) Physiology of echinodermata. Interscience Publishers, New York, pp 277–300Google Scholar
  9. Gibson AW, Burke RD (1987) Migratory and invasive behavior of pigment cells in normal and animalized sea urchin embryos. Exp Cell Res 173:546–557CrossRefPubMedGoogle Scholar
  10. Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365CrossRefPubMedGoogle Scholar
  11. Ho EC, Buckley KM, Schrankel CS, Schuh NW, Hibino T, Solek CM, Bae K, Wang G, Rast JP (2016) Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol Cell Biol 94:861–874CrossRefGoogle Scholar
  12. Hojo M, Omi A, Hamanaka G, Shindo K, Shimada A, Kondo M, Narita T, Kiyomoto M, Katsuyama Y, Ohnishi Y, Irie N, Takeda H (2015) Unexpected link between polyketide synthase and calcium carbonate biomineralization. Zool Lett 1:3.  https://doi.org/10.1186/s40851-014-0001-0CrossRefGoogle Scholar
  13. Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2497CrossRefPubMedGoogle Scholar
  14. Hopwood DA (2004) Cracking the polyketide code. PLoS Biol 2:166–169CrossRefGoogle Scholar
  15. Jacobson FW, Millott N (1953) Phenolases and melanogenesis in the coelomic fluid of the echinoid Diadema-antillarum phillippi. Proc R Soc Lond B Biol Sci 141:231–247CrossRefPubMedGoogle Scholar
  16. Kendrew SG, Hopwood DA, Marsh ENG (1997) Identification of a monooxygenase from Streptomyces coelicolor A3(2) involved in biosynthesis of actinorhodin: purification and characterization of the recombinant enzyme. J Bacteriol 179:4305–4310CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kiselev KV, Ageenko NV, Kurilenko VV (2013) Involvement of the cell-specific pigment genes pks and sult in bacterial defense response of sea urchins Strongylocentrotus intermedius. Dis Aquat Org 103:121–132CrossRefPubMedGoogle Scholar
  18. MacMunn CA (1883) Studies in animal chromatology. Proc Bgham Phil Soc 3:351–407Google Scholar
  19. Materna SC, Davidson EH (2012) A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos. Dev Biol 364:77–87CrossRefPubMedPubMedCentralGoogle Scholar
  20. Materna SC, Ransick A, Li E, Davidson EH (2013) Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos. Dev Biol 375:92–104CrossRefPubMedGoogle Scholar
  21. McClay DR, Peterson RE, Range RC, Winter-Vann AM, Ferkowicz MJ (2000) A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 127:5113–5122PubMedGoogle Scholar
  22. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627CrossRefGoogle Scholar
  23. Novakova E, Moran NA (2012) Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol 29:313–323CrossRefPubMedGoogle Scholar
  24. O’Brien RV, Davis RW, Khosla C, Hillenmeyer ME (2014) Computational identification and analysis of orphan assembly-line polyketide synthases. J Antibiot 67:89–97CrossRefPubMedGoogle Scholar
  25. Oliveri P, Carrick DM, Davidson EH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246:209–228CrossRefPubMedGoogle Scholar
  26. Oulhen N, Wessel GM (2016) Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo. Mol Reprod Dev 83:1046–1047CrossRefPubMedGoogle Scholar
  27. Perry G, Epel D (1981) Ca2+ -stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs. Exp Cell Res 134:65–72CrossRefPubMedGoogle Scholar
  28. Ransick A, Davidson EH (2006) Cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev Biol 297:587–602CrossRefPubMedGoogle Scholar
  29. Ransick A, Davidson EH (2012) Cis-regulatory logic driving glial cells missing: self-sustaining circuitry in later embryogenesis. Dev Biol 364:259–267CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ransick A, Rast JP, Minokawa T, Calestani C, Davidson EH (2002) New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. Dev Biol 246:132–147CrossRefPubMedGoogle Scholar
  31. Salaque A, Barbier M, Lederer E (1967) Sur la biosynthèse de l’échinochrome A par l’oursin Arbacia pustulosa. Bull Soc Chim Biol 49:841–848PubMedGoogle Scholar
  32. Schroder J, Raiber S, Berger T, Schmidt A, Schmidt J, Soares-Sello AM, Bardshiri E, Strack D, Simpson TJ, Veit M et al (1998) Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones. Biochemistry 37:8417–8425CrossRefPubMedGoogle Scholar
  33. Service M, Wardlaw AC (1984) Echinochrome-A as a bactericidal substance in the coelomic fluid of Echinus esculentus (L.). Comp Biochem Physiol 79B:161–165Google Scholar
  34. Sherwood DR, McClay DR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126:1703–1713PubMedGoogle Scholar
  35. Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millenium review. Nat Prod Rep 18:380–416CrossRefPubMedGoogle Scholar
  36. Sweet HC, Hodor PG, Ettensohn CA (1999) The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126:5255–5265PubMedGoogle Scholar
  37. Sweet HC, Gehring M, Ettensohn CA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129:1945–1955PubMedGoogle Scholar
  38. Tu Q, Cameron RA, Davidson EH (2014) Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol 385:160–167CrossRefPubMedGoogle Scholar
  39. Weissman K (2015a) Uncovering the structures of modular polyketide synthases. Nat Prod Rep 32:436–453CrossRefPubMedGoogle Scholar
  40. Weissman K (2015b) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–670CrossRefPubMedGoogle Scholar
  41. Weissman K (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230CrossRefPubMedGoogle Scholar
  42. Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyValdosta State UniversityValdostaUSA
  2. 2.Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceUSA

Personalised recommendations