Advertisement

Beach to Bench to Bedside: Marine Invertebrate Biochemical Adaptations and Their Applications in Biotechnology and Biomedicine

  • Aida Verdes
  • Mandë Holford
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

The ocean covers more than 70% of the surface of the planet and harbors very diverse ecosystems ranging from tropical coral reefs to the deepest ocean trenches, with some of the most extreme conditions of pressure, temperature, and light. Organisms living in these environments have been subjected to strong selective pressures through millions of years of evolution, resulting in a plethora of remarkable adaptations that serve a variety of vital functions. Some of these adaptations, including venomous secretions and light-emitting compounds or ink, represent biochemical innovations in which marine invertebrates have developed novel and unique bioactive compounds with enormous potential for basic and applied research. Marine biotechnology, defined as the application of science and technology to marine organisms for the production of knowledge, goods, and services, can harness the enormous possibilities of these unique bioactive compounds acting as a bridge between biological knowledge and applications. This chapter highlights some of the most exceptional biochemical adaptions found specifically in marine invertebrates and describes the biotechnological and biomedical applications derived from them to improve the quality of human life.

Notes

Acknowledgments

MH acknowledges funding from the Camille and Henry Dreyfus Teacher-Scholar Award and NSF awards CHE-1247550 and CHE-1228921.

References

  1. Anand P, O’Neil A, Lin E, Douglas T, Holford M, O’Neil A, Lin E, Douglas T, Holford M (2015) Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci Rep 5:12497CrossRefGoogle Scholar
  2. Arrieta JM, Arnaud-Haond S, Duarte CM (2010) What lies underneath: conserving the oceans’ genetic resources. Proc Natl Acad Sci USA 107:18318–18324.  https://doi.org/10.1073/pnas.0911897107CrossRefPubMedGoogle Scholar
  3. Bassot JM, Nicolas MT (1995) Bioluminescence in scale-worm photosomes: the photoprotein polynoidin is specific for the detection of superoxide radicals. Histochem Cell Biol 104:199–210.  https://doi.org/10.1007/BF01835153CrossRefPubMedGoogle Scholar
  4. Bonora M, Giorgi C, Bononi A, Marchi S, Patergnani S, Rimessi A, Rizzuto R, Pinton P (2013) Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. Nat Protoc 8:2105–2118.  https://doi.org/10.1038/nprot.2013.127CrossRefPubMedGoogle Scholar
  5. Caldwell RL (2005) An observation of inking behavior protecting adult octopus bocki from predation by green turtle (Chelonia mydas) hatchlings. Pac Sci 59:69–72.  https://doi.org/10.1353/psc.2005.0004CrossRefGoogle Scholar
  6. Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28:219–229.  https://doi.org/10.1016/j.tree.2012.10.020CrossRefPubMedGoogle Scholar
  7. Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805.  https://doi.org/10.1126/science.8303295CrossRefPubMedGoogle Scholar
  8. Chiba H, Tagami K (2011) Research and development of HALAVEN (Eribulin Mesylate). Yuki Gosei Kagaku Kyokaishi 69:600–610.  https://doi.org/10.5059/yukigoseikyokaishi.69.600CrossRefGoogle Scholar
  9. Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260.  https://doi.org/10.1146/annurev.bioeng.4.111901.093336CrossRefPubMedGoogle Scholar
  10. Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18:593–603.  https://doi.org/10.1111/j.1365-2958.1995.mmi_18040593.xCrossRefPubMedGoogle Scholar
  11. Conti E, Franks NP, Brick P (1996) Crystal structure of firefly luciferase throws light on a super-family of adenylate-forming enzymes. Structure 4:287–298.  https://doi.org/10.1016/S0969-2126(96)00033-0CrossRefPubMedGoogle Scholar
  12. Deheyn DD, Latz MI (2009) Internal and secreted bioluminescence of the marine polychaete Odontosyllis phosphorea (Syllidae). Invertebr Biol 128:31–45.  https://doi.org/10.1111/J.1744-7410.2008.00149.XCrossRefGoogle Scholar
  13. Derby CD (2007) Escape by inking and secreting: marine molluscs avoid predators through a rich array of chemicals and mechanisms. Biol Bull 213(3):274–289.  https://doi.org/10.2307/25066645CrossRefPubMedGoogle Scholar
  14. Derby CD (2014) Cephalopod ink: production, chemistry, functions and applications. Mar Drugs 12(5):2700–2730.  https://doi.org/10.3390/md12052700CrossRefPubMedPubMedCentralGoogle Scholar
  15. Erba E, Cavallaro E, Damia G, Mantovani R, Di Silvio A, Di Francesco AM, Riccardi R, Cuevas C, Faircloth GT, D’Incalci M (2004) The unique biological features of the marine product Yondelis (ET-743, trabectedin) are shared by its analog ET-637, which lacks the C ring. Oncol Res 14(11–12):579–587CrossRefGoogle Scholar
  16. Evans-Illidge EA, Logan M, Doyle J, Fromont J, Battershill CN, Ericson G, Wolff CW, Muirhead A, Kearns P, Abdo D, Kininmonth S, Llewellyn L (2013) Phylogeny drives large scale patterns in Australian marine bioactivity and provides a new chemical ecology rationale for future biodiscovery. PLoS One 8:e73800.  https://doi.org/10.1371/journal.pone.0073800CrossRefPubMedPubMedCentralGoogle Scholar
  17. Flexner A (1955) The usefulness of useless knowledge. J Chronic Dis 2:241–246.  https://doi.org/10.1016/0021-9681(55)90131-4CrossRefGoogle Scholar
  18. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JDA, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10:483–511.  https://doi.org/10.1146/annurev.genom.9.081307.164356CrossRefPubMedGoogle Scholar
  19. Fusetani N, Olivera BM, Oliveira AG (2000) ω-Conotoxin MVIIA: from marine snail venom to analgesic drug. In: Fusetani N (ed) Drugs from the sea. Karger, Basel, pp 75–85CrossRefGoogle Scholar
  20. Gimenez G, Metcalf P, Paterson NG, Sharpe ML (2016) Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase. Sci Rep 6:27638.  https://doi.org/10.1038/srep27638CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gonzales DT, Saloma CP (2014) A bioinformatics survey for conotoxin-like sequences in three turrid snail venom duct transcriptomes. Toxicon 92:66–74.  https://doi.org/10.1016/j.toxicon.2014.10.003CrossRefPubMedGoogle Scholar
  22. Gorson J, Holford M (2016) Small packages, big returns: uncovering the venom diversity of small invertebrate Conoidean snails. Integr Comp Biol:962–972.  https://doi.org/10.1093/icb/icw063
  23. Gorson J, Ramrattan G, Verdes A, Wright EM, Kantor YI, Srinivasan RR, Musunuri R, Packer D, Albano G, Qiu W-G, Holford M (2015) Molecular diversity and gene evolution of the venom arsenal of terebridae predatory marine snails. Genome Biol Evol 7:1761–1778.  https://doi.org/10.1093/gbe/evv104CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gouveneaux A, Mallefet J (2013) Physiological control of bioluminescence in a deep-sea planktonic worm, Tomopteris helgolandica. J Exp Biol 216:4285–4289.  https://doi.org/10.1242/jeb.090852CrossRefPubMedGoogle Scholar
  25. Greco GR, Cinquegrani M (2016) Firms plunge into the sea. Marine biotechnology industry, a first investigation. Front Mar Sci 2:124.  https://doi.org/10.3389/fmars.2015.00124CrossRefGoogle Scholar
  26. Haddock SH, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493.  https://doi.org/10.1146/annurev-marine-120308-081028CrossRefGoogle Scholar
  27. Halade GV, Rahman MM, Williams PJ, Barnes J, Fernandes G (2010) LOVAZA® extends median and maximal lifespan than regular fish oil of autoimmune lupus-prone mice. FASEB J 24(1_Suppl):738.7–738.7Google Scholar
  28. Han L, Lu X, Liu K, Wang K, Fang L, Weng LT, Zhang H, Tang Y, Ren F, Zhao C, Sun G, Liang R, Li Z (2017) Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11:2561–2574.  https://doi.org/10.1021/acsnano.6b05318CrossRefPubMedGoogle Scholar
  29. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784.  https://doi.org/10.4155/bfs.10.44CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harper MK, Bugni TS, Copp BR, James RD, Lindsay BS, Richardson AD, Schnabel PC, Tasdemir D, VanWagoner RM, Verbitski SM, Ireland CM (2001) Introduction to the chemical ecology of marine natural products. In: McCIintock J, Baker B (eds) Marine chemical ecology. CRC Press LLC, Boca Raton, pp 3–69.  https://doi.org/10.1201/9781420036602.sec1CrossRefGoogle Scholar
  31. Hart BW (2015) ADCETRIS: a regulatory case study of a new generation antibody-drug conjugate BT – Antibody-drug conjugates: the 21st century magic bullets for cancer. Antibody-Drug Conjugates. pp 191–201.  https://doi.org/10.1007/978-3-319-13081-1_11
  32. Holford M, Puillandre N, Modica MV, Watkins M, Collin R, Bermingham E, Olivera BM (2009) Correlating molecular phylogeny with venom apparatus occurrence in panamic auger snails (Terebridae). PLoS One 4:e7667.  https://doi.org/10.1371/journal.pone.0007667CrossRefPubMedPubMedCentralGoogle Scholar
  33. Iori D, Forti L, Massamba-N’Siala G, Prevedelli D, Simonini R (2014) Toxicity of the purple mucus of the polychaete Halla parthenopeia (Oenonidae) revealed by a battery of ecotoxicological bioassays. Sci Mar 78:589–595.  https://doi.org/10.3989/scimar.04080.21BCrossRefGoogle Scholar
  34. Kaas Q, Yu R, Jin AH, Dutertre S, Craik DJ (2012) ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res 40.  https://doi.org/10.1093/nar/gkr886
  35. Kelly P, Anand P, Uvaydov A, Chakravartula S, Sherpa C, Pires E, O’Neil A, Douglas T, Holford M (2015) Developing a dissociative nanocontainer for peptide drug delivery. Int J Environ Res Public Health 12:12543–12555.  https://doi.org/10.3390/ijerph121012543CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kicklighter CE, Germann M, Kamio M, Derby CD (2007) Molecular identification of alarm cues in the defensive secretions of the sea hare Aplysia californica. Anim Behav 74:1481–1492.  https://doi.org/10.1016/j.anbehav.2007.02.015CrossRefGoogle Scholar
  37. Kim JE, Kalimuthu S, Ahn B-C (2015) In vivo cell tracking with bioluminescence imaging. Nucl Med Mol Imaging 49:3–10.  https://doi.org/10.1007/s13139-014-0309-xCrossRefPubMedGoogle Scholar
  38. King GF (2011) Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11:1469–1484.  https://doi.org/10.1517/14712598.2011.621940CrossRefPubMedGoogle Scholar
  39. Kord Forooshani P, Lee BP (2017) Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem.  https://doi.org/10.1002/pola.28368
  40. Lander ES (2016) The heroes of CRISPR. Cell 164(1–2):18–28.  https://doi.org/10.1016/j.cell.2015.12.041CrossRefPubMedGoogle Scholar
  41. Lee CC, Hsieh HJ, Hsieh CH, Hwang DF (2015) Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxicity in A375.S2 cells. Exp Mol Pathol 99:7–15.  https://doi.org/10.1016/j.yexmp.2015.05.001CrossRefPubMedGoogle Scholar
  42. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802.  https://doi.org/10.1038/nrd1197CrossRefPubMedGoogle Scholar
  43. Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11CrossRefGoogle Scholar
  44. Li L, Zeng H (2016) Marine mussel adhesion and bio-inspired wet adhesives. Biotribology 5:44–51.  https://doi.org/10.1016/j.biotri.2015.09.004CrossRefGoogle Scholar
  45. Lindquist N (2002) Chemical defense of early life stages of benthic marine invertebrates. J Chem Ecol 28:1987–2000.  https://doi.org/10.1023/A:1020745810968CrossRefPubMedGoogle Scholar
  46. Livett BG, Gayler KR, Khalil Z (2004) Drugs from the sea: conopeptides as potential therapeutics. Curr Med Chem 11:1715–1723CrossRefGoogle Scholar
  47. Love-Chezem T, Aggio JF, Derby CD (2013) Defense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors. J Exp Biol 216:1364–1372.  https://doi.org/10.1242/jeb.081828CrossRefPubMedGoogle Scholar
  48. Lundin A, Rickardsson A, Thore A (1976) Continuous monitoring of ATP-converting reactions by purified firefly luciferase. Anal Biochem 75:611–620.  https://doi.org/10.1016/0003-2697(76)90116-0CrossRefPubMedGoogle Scholar
  49. Macek P (1992) Polypeptide cytolytic toxins from sea anemones (Actiniaria). FEMS Microbiol Immunol 5:121–129CrossRefGoogle Scholar
  50. Madero-Visbal RA, Colon JF, Hernandez IC, Limaye A, Smith J, Lee CM, Arlen PA, Herrera L, Baker CH (2012) Bioluminescence imaging correlates with tumor progression in an orthotopic mouse model of lung cancer. Surg Oncol.  https://doi.org/10.1016/j.suronc.2010.07.008
  51. Martini S, Haddock SHD (2017) Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Sci Rep 7:45750.  https://doi.org/10.1038/srep45750CrossRefPubMedPubMedCentralGoogle Scholar
  52. McGivern JG (2007) Ziconotide: a review of its pharmacology and use in the treatment of pain. Neuropsychiatr Dis Treat 3:69–85CrossRefGoogle Scholar
  53. Mei Y, Wang Y, Chen H, Sun ZS, Da Ju X (2016) Recent progress in CRISPR/Cas9 technology. J Genet Genomics 43(2):63–75.  https://doi.org/10.1016/j.jgg.2016.01.001CrossRefPubMedGoogle Scholar
  54. Mezzanotte L, van ‘t Root M, Karatas H, Goun EA, Löwik CWGM (2017) In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35(7):640–652.  https://doi.org/10.1016/j.tibtech.2017.03.012CrossRefPubMedGoogle Scholar
  55. Miljanich G (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040.  https://doi.org/10.2174/0929867043363884CrossRefPubMedGoogle Scholar
  56. Mojica FJM, Rodriguez-Valera F (2016) The discovery of CRISPR in archaea and bacteria. FEBS J 283(17):3162–3169.  https://doi.org/10.1111/febs.13766CrossRefPubMedGoogle Scholar
  57. Nakagawa H, Tu AT, Kimura A (1991) Purification and characterization of Contractin A from the pedicellarial venom of sea urchin, Toxopneustes pileolus. Arch Biochem Biophys 284:279–284.  https://doi.org/10.1016/0003-9861(91)90296-UCrossRefPubMedGoogle Scholar
  58. Neifar A, Ben Abdelmalek I, Bouajila G, Kolsi R, Bradai MN, Abdelmouleh A, Gargouri A, Ayed N (2013) Purification and incorporation of the black ink of cuttlefish Sepia officinalis in eye cosmetic products. Color Technol 129:150–154.  https://doi.org/10.1111/cote.12009CrossRefGoogle Scholar
  59. Nolen TG, Johnson PM, Kicklighter CE, Capo T (1995) Ink secretion by the marine snail Aplysia californica enhances its ability to escape from a natural predator. J Comp Physiol A 176:239–254.  https://doi.org/10.1007/BF00239926CrossRefGoogle Scholar
  60. Norton RS, Olivera BM (2006) Conotoxins down under. Toxicon 48:780–798.  https://doi.org/10.1016/j.toxicon.2006.07.022CrossRefPubMedGoogle Scholar
  61. Nusnbaum M, Derby CD (2010) Effects of sea hare ink secretion and its escapin-generated components on a variety of predatory fishes. Biol Bull 218:282–292.  https://doi.org/10.1086/BBLv218n3p282CrossRefPubMedGoogle Scholar
  62. Oba Y, Stevani CV, Oliveira AG, Tsarkova AS, Chepurnykh TV, Yampolsky IV (2016) Selected least studied but not forgotten bioluminescent systems. Photochem Photobiol 93:405–415.  https://doi.org/10.1111/php.12704CrossRefGoogle Scholar
  63. Olivera BM (1997) Conus venom peptides, receptor and ion channel targets and drug design: 50 million years of neuropharmacology (E.E. Just Lecture, 1996). Mol Biol Cell 8:2101–2109CrossRefGoogle Scholar
  64. Olivera BM, Teichert RW (2007) Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol Interv 7:251–260.  https://doi.org/10.1124/mi.7.5.7CrossRefPubMedGoogle Scholar
  65. Ortiz E, Gurrola GB, Schwartz EF, Possani LD (2015) Scorpion venom components as potential candidates for drug development. Toxicon 93:125–135.  https://doi.org/10.1016/j.toxicon.2014.11.233CrossRefPubMedGoogle Scholar
  66. Ottolini D, Calì T, Brini M (2013) Measurements of Ca2+ concentration with recombinant targeted luminescent probes. Methods Mol Biol 937:273–291.  https://doi.org/10.1007/978-1-62703-086-1-17CrossRefPubMedGoogle Scholar
  67. Paul VJ, Pennings SC (1991) Diet-derived chemical defenses in the sea hare Stylocheilus longicauda (Quoy et Gaimard 1824). J Exp Mar Biol Ecol 151:227–243.  https://doi.org/10.1016/0022-0981(91)90126-HCrossRefGoogle Scholar
  68. Petras D, Heiss P, Süssmuth RD, Calvete JJ (2015) Venom proteomics of Indonesian king cobra, Ophiophagus hannah: integrating top-down and bottom-up approaches. J Proteome Res 14:2539–2556.  https://doi.org/10.1021/acs.jproteome.5b00305CrossRefPubMedGoogle Scholar
  69. Ponce D, Brinkman DL, Potriquet J, Mulvenna J (2016) Tentacle transcriptome and venom proteome of the pacific sea nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins (Basel) 8:102.  https://doi.org/10.3390/toxins8040102CrossRefGoogle Scholar
  70. Prince JS (2007) Opaline gland ultrastructure in Aplysia californica (Gastropoda: Anaspidea). J Molluscan Stud 73:199–204.  https://doi.org/10.1093/mollus/eym016CrossRefGoogle Scholar
  71. Privat de Garilhe M, de Rudder J (1964) Effect of 2 arbinose nucleosides on the multiplication of herpes virus and vaccine in cell culture. C R Hebd Seances Acad Sci 259:2725–2728Google Scholar
  72. Puillandre N, Koua D, Favreau P, Olivera BM, Stocklin R (2012) Molecular phylogeny, classification and evolution of conopeptides. J Mol Evol 74:297–309.  https://doi.org/10.1007/s00239-012-9507-2CrossRefPubMedGoogle Scholar
  73. Puillandre N, Bouchet P, Duda TF, Kauferstein S, Kohn AJ, Olivera BM, Watkins M, Meyer C (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303.  https://doi.org/10.1016/j.ympev.2014.05.023CrossRefPubMedPubMedCentralGoogle Scholar
  74. Querellou J, Børresen T, Boyen C, Dobson A, Höfle M, Ianora A, Jaspars M, Kijjoa A, Olafsen J, Rigos G, Wijffels R (2010) Marine biotechnology: a new vision and strategy for Europe: marine board-ESF Postition paper 15. European Science Foundation, Beernem, p 91 (Marine Board-ESF Position Paper No. 15)Google Scholar
  75. Rachlis AR (1990) Zidovudine (retrovir) update. CMAJGoogle Scholar
  76. Schmidtko A, Lötsch J, Freynhagen R, Geisslinger G (2010) Ziconotide for treatment of severe chronic pain. Lancet 375:1569–1577.  https://doi.org/10.1016/S0140-6736(10)60354-6CrossRefPubMedGoogle Scholar
  77. Schroeder G (2015) Oceanic bioactive molecules and marine natural products with biopharmaceutical potential. J Mar Sci Res Dev 5.  https://doi.org/10.4172/2155-9910.S1.010
  78. Shimomura O (1985) Bioluminescence in the sea: photoprotein systems. Symp Soc Exp Biol 39:351–372PubMedGoogle Scholar
  79. Shimomura O (2012) Bioluminescence: chemical principles and methods. World Scientific Publishing Company, SingaporeCrossRefGoogle Scholar
  80. Smith AM (2002) The structure and function of adhesive gels from invertebrates. Integr Comp Biol 42:1164–1171.  https://doi.org/10.1093/icb/42.6.1164CrossRefPubMedGoogle Scholar
  81. Staats PS, Yearwood T, Charapata SG, Presley RW, Wallace MS, Byas-Smith M, Fisher R, Bryce DA, Mangieri EA, Luther RR, Mayo M, McGuire D, Ellis D (2004) Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS: a randomized controlled trial. J Am Med Assoc 291:63–70CrossRefGoogle Scholar
  82. Stabili L, Schirosi R, Parisi MG, Piraino S, Cammarata M (2015) The mucus of Actinia equina (Anthozoa, Cnidaria): an unexplored resource for potential applicative purposes. Mar Drugs 13:5276–5296.  https://doi.org/10.3390/md13085276CrossRefPubMedPubMedCentralGoogle Scholar
  83. Stewart RJ, Ransom TC, Hlady V (2011) Natural underwater adhesives. J Polym Sci B Polym Phys 49(11):757–771.  https://doi.org/10.1002/polb.22256CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sullivan MP (1982) Use of cytosar in pediatric acute myelocytic leukemia and leukemic meningitis. Med Pediatr Oncol 10:193–200CrossRefGoogle Scholar
  85. Sweeney TJ, Mailänder V, Tucker AA, Olomu AB, Zhang W, Cao YA, Negrin RS, Contag CH (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96:12044–12049.  https://doi.org/10.1073/PNAS.96.21.12044CrossRefPubMedGoogle Scholar
  86. Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84:41–68.  https://doi.org/10.1152/physrev.00020.2003CrossRefPubMedGoogle Scholar
  87. Thuesen EV, Kogure K, Hashimoto K, Nemoto T (1988) Poison arrowworms: a tetrodotoxin venom in the marine phylum Chaetognatha. J Exp Mar Biol Ecol 116:249–256.  https://doi.org/10.1016/0022-0981(88)90030-5CrossRefGoogle Scholar
  88. Trincone A, Kusaykin M, Ermakova S (2015) Marine biomolecules. Frontiers Media, Lausane. doi: https://doi.org/10.3389/978-2-88919-661-6
  89. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544CrossRefGoogle Scholar
  90. Uhlig T, Kyprianou T, Giancarlo F, Alberto C, Heiligers D, Hills D, Ribes X, Verhaert P, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69.  https://doi.org/10.1016/j.euprot.2014.05.003CrossRefGoogle Scholar
  91. Verdes A, Gruber DF (2017) Glowing worms: biological, chemical, and functional diversity of bioluminescent annelids. Integr Comp Biol 57:18–32.  https://doi.org/10.1093/icb/icx017CrossRefPubMedGoogle Scholar
  92. Verdes A, Simpson D, Holford M (2018) Are fireworms venomous? Evidence for the convergent evolution of toxin homologs in three species of fireworms (Annelida, Amphinomidae). Genome Biol Evol 10:249–268.  https://doi.org/10.1093/gbe/evx279CrossRefPubMedGoogle Scholar
  93. Vetter I, Lewis RJ (2012) Therapeutic potential of cone snail venom peptides. Curr Top Med Chem 12:1546–1552CrossRefGoogle Scholar
  94. Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, Lewis RJ, King GF (2011) Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 40:15–28.  https://doi.org/10.1007/s00726-010-0516-4CrossRefPubMedGoogle Scholar
  95. Viviani VR (2002) The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci 59(11):1833–1850.  https://doi.org/10.1007/PL00012509CrossRefPubMedGoogle Scholar
  96. von Reumont BM, Campbell LI, Jenner RA (2014a) Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 6:3488–3551.  https://doi.org/10.3390/toxins6123488CrossRefGoogle Scholar
  97. von Reumont BM, Campbell LI, Richter S, Hering L, Sykes D, Hetmank J, Jenner RA, Bleidorn C (2014b) A polychaete’s powerful punch: venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol Evol 6:2406–2423.  https://doi.org/10.1093/gbe/evu190CrossRefGoogle Scholar
  98. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJR, Kerkkamp HME, Vos RA, Guerreiro I, Calvete JJ, Wüster W, Woods AE, Logan JM, Harrison RA, Castoe TA, de Koning APJ, Pollock DD, Yandell M, Calderon D, Renjifo C, Currier RB, Salgado D, Pla D, Sanz L, Hyder AS, Ribeiro JMC, Arntzen JW, van den Thillart GEEJM, Boetzer M, Pirovano W, Dirks RP, Spaink HP, Duboule D, McGlinn E, Kini RM, Richardson MK (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA 110:20651–20656.  https://doi.org/10.1073/pnas.1314702110CrossRefPubMedGoogle Scholar
  99. Weigand WJ, Messmore A, Tu J, Morales-Sanz A, Blair DL, Deheyn DD, Urbach JS, Robertson-Anderson RM (2017) Active microrheology determines scale-dependent material properties of Chaetopterus mucus. PLoS One 12:e0176732.  https://doi.org/10.1371/journal.pone.0176732CrossRefPubMedPubMedCentralGoogle Scholar
  100. Widder EA (2010) Bioluminescence in the Ocean. Science 704:704–708.  https://doi.org/10.1126/science.1174269CrossRefGoogle Scholar
  101. Widder EA, Falls B (2014) Review of bioluminescence for engineers and scientists in biophotonics. IEEE J Sel Top Quantum Electron 20:1–10.  https://doi.org/10.1109/JSTQE.2013.2284434CrossRefGoogle Scholar
  102. Xu H, Gou JY, Choi GP, Lee HY, Ahn J (2009) Functional properties of squid by-products fermented by probiotic bacteria. Food Sci Biotechnol 18:761–765Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Ciencias, Departamento de Biología (Zoología)Universidad Autónoma de MadridMadridSpain
  2. 2.Department of Chemistry, Hunter College Belfer Research CenterCity University of New YorkNew YorkUSA
  3. 3.Sackler Institute of Comparative GenomicsAmerican Museum of Natural HistoryNew YorkUSA
  4. 4.The Graduate Center, Program in Biology, Chemistry and BiochemistryCity University of New YorkNew YorkUSA
  5. 5.Department of BiochemistryWeill Cornell MedicineNew YorkUSA

Personalised recommendations