Solitary Ascidians as Model Organisms in Regenerative Biology Studies

  • Tal GordonEmail author
  • Noa Shenkar
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


Regeneration, the process of replacing lost or damaged body parts, has long captured human imagination and is a key feature among all animal phyla. Due to their close phylogenetic relationship to vertebrates and their high regenerative abilities, ascidians (Chordata, Ascidiacea) are often used as models to shed light on the cellular and genetic process involved in tissue regeneration. Surprisingly, ascidian regeneration studies are based on only a few model species. In this chapter, we point out the important potential of solitary ascidians in regenerative and stem cell studies. We review recent studies of regeneration among solitary ascidians and discuss the cellular mechanism of tissue regeneration and the possible involvement of circulating cells in these processes. New data regarding the relationship between age and regeneration abilities of the solitary ascidian Polycarpa mytiligera (Stolidobranchia, Styelidae) are presented. The unique regeneration abilities found in P. mytiligera following evisceration of its digestive system and following amputation of its neural complex and siphon-associated structures and nerves imply on its potential to serve as a novel model system for understanding tissue regeneration.


Regeneration Ascidians Evisceration Neural complex Polycarpa mytiligera 


  1. Agata K, Watanabe K (1999) Molecular and cellular aspects of planarian regeneration. Semin Cell Dev Biol 10:377–383PubMedCrossRefGoogle Scholar
  2. Anchelin M, Murcia L, Alcaraz-Pérez F, García-Navarro EM, Cayuela ML (2011) Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One 6(2):e16955PubMedPubMedCentralCrossRefGoogle Scholar
  3. Auger H, Sasakura Y, Joly JS, Jeffery WR (2010) Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Dev Biol 339(2):374–389PubMedPubMedCentralCrossRefGoogle Scholar
  4. Azevedo AS, Grotek B, Jacinto A, Weidinger G (2011) The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS One 6(7):e22820PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bely AE (2006) Distribution of segment regeneration ability in the Annelida. Integr Comp Biol 46(4):508–518PubMedCrossRefGoogle Scholar
  6. Bely AE (2010) Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol 50(4):515–527PubMedCrossRefGoogle Scholar
  7. Bely AE, Nyberg KG (2010) Evolution of animal regeneration: re-emergence of a field. Trends Ecol Evol 25(3):161–170PubMedCrossRefGoogle Scholar
  8. Berrill NJ (1951) Regeneration and budding in tunicates. Biol Rev Camb Philos Soc 26:456–475CrossRefGoogle Scholar
  9. Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310:1919–1923PubMedCrossRefGoogle Scholar
  10. Brockes JP, Kumar A, Velloso CP (2001) Regeneration as an evolutionary variable. J Anat 199:3–11PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brown FD, Keeling EL, Le AD, Swalla BJ (2009) Whole body regeneration in a colonial ascidian, Botrylloides violaceus. J Exp Zool B Mol Dev Evol 312:885–900PubMedCrossRefGoogle Scholar
  12. Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169:338–346PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carlson BM (2007) Principles of regenerative biology. Academic Press, San Diego, CAGoogle Scholar
  14. Carnevali M, Burighel P (2010) Regeneration in echinoderms and ascidians. eLS.
  15. Chen YT, Dai CF (1998) Sexual Reproduction of the Ascidian Polycarpa cryptocarpa kroboja from the Northern Coast of Taiwan. Acta Oceanogr Taiwanica 37(2):195–204Google Scholar
  16. Chen CH, Poss KD (2017) Regeneration genetics. Annu Rev Genet 51:63–82PubMedCrossRefGoogle Scholar
  17. Cohen A, Berrill NJ (1936) The development of isolated blastomeres of the ascidian egg. J Exp Zool 74:91–117CrossRefGoogle Scholar
  18. Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23):3715–3727PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cox DN, Chao A, Lin H (2000) piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127:503–514PubMedGoogle Scholar
  20. Dahlberg C, Auger H, Dupont S, Sasakura Y, Thorndyke M, Joly JS (2009) Refining the Ciona intestinalis model of central nervous system regeneration. PLoS One 4(2):e4458PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dalby JE Jr (1989) Predation of ascidians by Melongena corona (Neogastropoda: Melongenidae) in the northern Gulf of Mexico. Bull Mar Sci 45:708–712Google Scholar
  22. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439(7079):965–968PubMedCrossRefPubMedCentralGoogle Scholar
  23. Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46(11):592–604PubMedCrossRefGoogle Scholar
  24. Egger B, Ladurner P, Nimeth K, Gschwentner R, Rieger R (2006) The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev Genes Evol 216(10):565–577PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eguchi G, Abe SI, Watanabe K (1974) Differentiation of lens-like structures from newt iris epithelial cells in vitro. Proc Natl Acad Sci USA 71(12):5052–5056PubMedCrossRefGoogle Scholar
  26. Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millán JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384PubMedPubMedCentralCrossRefGoogle Scholar
  27. Emson R, Wilkie I (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Ann Rev 18:155–250Google Scholar
  28. Epelbaum A, Pearce CM, Therriault TW (2009) A case of atrial siphon duplication in Styela clava (Tunicata: Ascidiacea). Mar Biodivers Rec 2:e32CrossRefGoogle Scholar
  29. Fei JF, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM (2014) CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep 3:444–459CrossRefGoogle Scholar
  30. Fisher TR (1976) Oxygen uptake of the solitary tunicate Styela plicata. Biol Bull 151(2):297–305PubMedCrossRefGoogle Scholar
  31. Freeman G (1964) The role of blood cells in the process of asexual reproduction in the tunicate Perophora viridis. J Exp Zool 156(2):157–183PubMedCrossRefGoogle Scholar
  32. Fujita H, Nanba H (1971) Fine structure and its functional properties of the endostyle of ascidians, Ciona intestinalis. Z Zellforsch Mikrosk Anat 121(4):455–469PubMedCrossRefGoogle Scholar
  33. García-Arrarás JE, Estrada-Rodgers L, Santiago R, Torres II, Díaz-Miranda L, Torres-Avillán I (1998) Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J Exp Zool 281(4):288–304PubMedCrossRefGoogle Scholar
  34. Giangrande A, Licciano M (2014) Regeneration and clonality in Metazoa. The price to pay for evolving complexity. Invertebr Reprod Dev 58(1):1–8CrossRefGoogle Scholar
  35. Gierer A, Berking S, Bode H, David C, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nat New Biol 239:98–101PubMedCrossRefGoogle Scholar
  36. Gordon T (2016) Ecology and biology of the solitary ascidian Polycarpa mytiligera in the Red sea. MSc thesis, Tel-Aviv UniversityGoogle Scholar
  37. Goss RJ (1969) Principles of regeneration. Academic Press, New YorkGoogle Scholar
  38. Goss RJ (1992) The evolution of regeneration: adaptive or inherent? J Theor Biol 159(2):241–260PubMedCrossRefGoogle Scholar
  39. Grillo M, Konstantinides N, Averof M (2016) Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 40:23–31PubMedCrossRefGoogle Scholar
  40. Gulliksen B, Skjæveland SH (1973) The sea-star, Asterias rubens (L.), as predator on the ascidian, Ciona intestinalis (L.) in Borgenfjorden, North-Tröndelag, Norway. Sarsia 52:15–20CrossRefGoogle Scholar
  41. Gurley KA, Sánchez Alvarado A (2008) Stem cells in animal models of regeneration. In: StemBook (ed) The stem cell research community. Harvard Stem Cell Institute, Cambridge, MAGoogle Scholar
  42. Gutierrez S, Brown FD (2017) Vascular budding in Symplegma brakenhielmi and the evolution of coloniality in styelid ascidians. Dev Biol 423(2):152–169PubMedCrossRefGoogle Scholar
  43. Hamada M, Goricki S, Byerly MS, Satoh N, Jeffery WR (2015) Evolution of the chordate regeneration blastema: differential gene expression and conserved role of notch signaling during siphon regeneration in the ascidian Ciona. Dev Biol 405(2):304–315PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hirschler J (1914) Über die Restitutions-und Involutionsvoränge bei operierten Exemplaren von Ciona intestinalis Flem. (Teil I) nebst Bemurkungen über den Wert des Negativen für das Potenzproblem. Arch Mikrosk Anat 85:205–227CrossRefGoogle Scholar
  45. Jeffery WR (2001) Determinants of cell and positional fate in ascidian embryos. Int Rev Cytol 203:3–62PubMedCrossRefGoogle Scholar
  46. Jeffery WR (2012) Siphon regeneration capacity is compromised during aging in the ascidian Ciona intestinalis. Mech Ageing Dev 133(9):629–636PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jeffery WR (2014) The tunicate Ciona: a model system for understanding the relationship between regeneration and aging. Invertebr Reprod Dev 59:17–22PubMedCentralCrossRefGoogle Scholar
  48. Jeffery WR (2015a) Closing the wounds: one hundred and twenty-five years of regenerative biology in the ascidian Ciona intestinalis. Genes 53:48–65CrossRefGoogle Scholar
  49. Jeffery WR (2015b) Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis. Regeneration 2:1–18PubMedCrossRefGoogle Scholar
  50. Jeffery WR (2015c) Chapter seven-regeneration, stem cells, and aging in the tunicate Ciona: insights from the oral siphon. Int Rev Cell Mol Biol 319:255–282PubMedCrossRefGoogle Scholar
  51. Kaneko N, Katsuyama Y, Kawamura K, Fujiwara S (2010) Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis. Develop Growth Differ 52(5):457–468CrossRefGoogle Scholar
  52. Kawamura K, Sunanaga T (2010) Hemoblasts in colonial tunicates: are they stem cells or tissue restricted progenitor cells? Develop Growth Differ 52(1):69–76CrossRefGoogle Scholar
  53. Kawamura K, Sugino Y, Sunanaga T, Fujiwara S (2008) Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates. Develop Growth Differ 50:1–11CrossRefGoogle Scholar
  54. Koplovitz G, Shenkar N (2014) The Biodiversity of the Class Ascidiacea in the Gulf of Eilat (Aqaba). Israel Taxonomy Initiative Report.
  55. Kott P (1985) The Australian Ascidiacea. Part. I: Phlebobranchia and Stolidobranchia. Mem Qd Mus 23:1–440Google Scholar
  56. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65PubMedCrossRefGoogle Scholar
  57. Lambert CC (2005) Historical introduction, overview, and reproductive biology of the protochordates. Can J Zool 83(1):1–7CrossRefGoogle Scholar
  58. Lenhoff SG, Lenhoff HM (1986) Hydra and the birth of experimental biology, 1744: Abraham Trembley’s memoirs concerning the natural history of a type of freshwater polyp with arms shaped like horns. Boxwood Press, Pacific GroveGoogle Scholar
  59. Lindsay SM (2010) Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr Comp Biol 50(4):479–493PubMedCrossRefGoogle Scholar
  60. Mackie GO, Burighel P (2005) The nervous system in adult tunicates: current research directions. Can J Zool 83(1):151–183CrossRefGoogle Scholar
  61. Mashanov VS, García-Arrarás JE (2011) Gut regeneration in holothurians: a snapshot of recent developments. Biol Bull 221(1):93–109PubMedCrossRefGoogle Scholar
  62. Mashanov VS, Dolmatov IY, Heinzeller T (2005) Transdifferentiation in holothurian gut regeneration. Biol Bull 209(3):184–193PubMedCrossRefGoogle Scholar
  63. McCusker C, Bryant SV, Gardiner DM (2015) The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods. Regeneration 2(2):54–71PubMedPubMedCentralCrossRefGoogle Scholar
  64. Medina BN, Santos de Abreu I, Cavalcante LA, Silva WA, da Fonseca RN, Allodi S (2015) 3-acetylpyridine induced degeneration in the adult ascidian neural complex: reactive and regenerative changes in glia and blood cells. Dev Neurobiol 75(8):877–893PubMedCrossRefGoogle Scholar
  65. Millar RH (1962) The breeding and development of the ascidian Polycarpa tinctor. Q J Microsc Sci 103:399–403Google Scholar
  66. Millar RH (1971) The biology of ascidians. Adv Mar Biol 9:1–100CrossRefGoogle Scholar
  67. Mingazzini P (1891) Sulla rigenerazione nei Tunicati. Boll Dell Soc Natur Napoli 5:76–79Google Scholar
  68. Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. Orstom, ParisGoogle Scholar
  69. Noda K (1971) Reconstitution of dissociated cells of hydra. Zool Mag 80:99–101Google Scholar
  70. Pérez-Portela R, Turon X (2007) Prey preferences of the polyclad flatworm Prostheceraeus roseus among Mediterranean species of the ascidian genus Pycnoclavella. Hydrobiologia 592:535−539CrossRefGoogle Scholar
  71. Pérez-Portela R, Bishop JD, Davis AR, Turon X (2009) Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 50:560–570PubMedCrossRefGoogle Scholar
  72. Pestarino M, Fiala Medioni A, Ravera F (1988) Ultrastructure of the branchial wall of a lower chordate: the ascidian Ciona intestinalis. J Morphol 197(3):269–276PubMedCrossRefGoogle Scholar
  73. Poss KD (2010) Advances in understanding tissue regenerative capacity and mechanisms in animals. Nat Rev Genet 11(10):710–722PubMedPubMedCentralCrossRefGoogle Scholar
  74. Reddien PW, Tanaka EM (2016) Editorial overview: Cell reprogramming, regeneration and repair. Curr Opin Genet Dev 40:iv–viPubMedCrossRefGoogle Scholar
  75. Sanchez Alvarado A (2000) Regeneration in the metazoans: why does it happen? Bioessays 22(6):578–590PubMedCrossRefGoogle Scholar
  76. Sanchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7(11):873–884PubMedCrossRefGoogle Scholar
  77. Satoh N (1994) Developmental biology of Ascidians. Cambridge University Press, CambridgeGoogle Scholar
  78. Selys-Longchamps MD (1915) Autotomie et régénération des viscères chez Polycarpa tenera Lacaze et Delage. C R Acad Sci Paris 160:566–569Google Scholar
  79. Shenkar N, Gordon T (2015) Gut-spilling in chordates: evisceration in the tropical ascidian Polycarpa mytiligera. Sci Rep 5:9614PubMedPubMedCentralCrossRefGoogle Scholar
  80. Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6.
  81. Shenkar N, Koplovitz G, Dray L, Gissi C, Huchon D (2016) Back to solitude: Solving the phylogenetic position of the Diazonidae using molecular and developmental characters. Mol Phylogenet Evol 100:51–56PubMedCrossRefGoogle Scholar
  82. Shenkar N, Gittenberger A, Lambert G, Rius M, Moreira Da Rocha R, Swalla B J, Turron X (2017) Ascidiacea World Database.
  83. Shukalyuk AI, Dolmatov IY (2001) Regeneration of the digestive tube in the Holothurian Apostichopus japonicus after Evisceration. Biol Morya 27(3):168–173Google Scholar
  84. Sugino YM, Matsumura M, Kawamura K (2007) Body muscle-cell differentiation from coelomic stem cells in colonial tunicates. Zool Sci 24(6):542–546PubMedCrossRefGoogle Scholar
  85. Swan EF (1961) Seasonal evisceration in the sea cucumber, Parastichopus californicus (Stimpson). Science 133:1078–1079PubMedCrossRefGoogle Scholar
  86. Tanaka EM (2016) The molecular and cellular choreography of appendage regeneration. Cell 165(7):1598–1608PubMedCrossRefGoogle Scholar
  87. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185PubMedPubMedCentralCrossRefGoogle Scholar
  88. Technau U, Cramer von Laue C, Rentzsch F, Luft S, Hobmayer B, Bode HR, Holstein TW (2000) Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci USA 97:12127–12131PubMedCrossRefGoogle Scholar
  89. Tiozzo S, Brown FD, De Tomaso AW (2008) Regeneration and stem cells in ascidians. In: Bosch TCG (ed) Stem cells from hydra to man. Springer, New York, pp 95–112Google Scholar
  90. Tokioka T (1970) Ascidians from Mindoro Island, The Philippines. Seto Mar Biol Lab 18(2):75–107Google Scholar
  91. Tsonis PA (2000) Regeneration in vertebrates. Dev Biol 221(2):273–284PubMedCrossRefGoogle Scholar
  92. Von Haffner K (1933) Die überzaähligen Siphon und Ocellen von Ciona intestinalis L. (Experimentellmorpholosiche Untersunchungen). Z Wiss Zool 143:16–52Google Scholar
  93. Voskoboynik A, Simon-Blecher N, Soen Y, Rinkevich B, De Tomaso AW, Ishizuka KJ, Weissman IL (2007) Striving for normality: whole body regeneration through a series of abnormal generations. FASEB J 21(7):1335–1344PubMedCrossRefGoogle Scholar
  94. Voskoboynik A, Soen Y, Rinkevich Y, Rosner A, Ueno H, Reshef R, Ishizuka KJ, Palmeri KJ, Moiseeva E, Rinkevich B, Weissman IL (2008) Identification of the endostyle as a stem cell niche in a colonial chordate. Cell Stem Cell 3(4):456–464PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci USA 104(38):15132–15137PubMedCrossRefGoogle Scholar
  97. Yoshida K, Hozumi A, Treen N, Sakuma T, Yamamoto T, Shirae-Kurabayashi M, Sasakura Y (2017) Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells. Dev Biol 423(2):111–125PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Zoology, George S. Wise Faculty of Life SciencesTel-Aviv UniversityTel-AvivIsrael
  2. 2.The Steinhardt Museum of Natural History, Israel National Center for Biodiversity StudiesTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations