Differentiation and Transdifferentiation of Sponge Cells

  • Maja AdamskaEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


Over 100 years of sponge biology research has demonstrated spectacular diversity of cell behaviors during embryonic development, metamorphosis and regeneration. The past two decades have allowed the first glimpses into molecular and cellular mechanisms of these processes. We have learned that while embryonic development of sponges utilizes a conserved set of developmental regulatory genes known from other animals, sponge cell differentiation appears unusually labile. During normal development, and especially as a response to injury, sponge cells appear to have an uncanny ability to transdifferentiate. Here, I argue that sponge cell differentiation plasticity does not preclude homology of cell types and processes between sponges and other animals. Instead, it does provide a wonderful opportunity to better understand transdifferentiation processes in all animals.



Research in my laboratory is currently supported by the Australian Research Council through Future Fellowship (FT160100068) and the Centre of Excellence for Coral Reef Studies (CE140100020) grants. I acknowledge generous past funding from the Sars International Centre for Marine Molecular Biology (Bergen, Norway). I am deeply indebted to past and current members of my laboratories, as well as collaborators and colleagues, for continuous and stimulating discussions on sponge cell biology and evolution of animal body plans. Special thanks to Kathryn Green, Christin Zwafink, and Erika Broberg for the assistance in generating images shown in many of the figures presented in this chapter and to Noriko Funayama and Sacha Ereskovsky for photographs of Ephydatia and Oscarella.


  1. Adams EDM, Goss GG, Leys SP (2010) Freshwater sponges have functional, sealing epithelia with high transepithelial resistance and negative transepithelial potential. PLoS One 5(11):e15040PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adamska M (2016a) Sponges as models to study emergence of complex animals. Curr Opin Genet Dev 39:21–28PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adamska M (2016b) Sponges as the Rosetta Stone of colonial-to-multicellular transition. In: Niklas KJ, Newman SA (eds) Multicellularity: origins and evolution. The MIT Press, Cambridge, MA; London 978-0-262-03415-9Google Scholar
  4. Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, Degnan BM (2007) Wnt and Tgfβ expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One 2(10):e1031PubMedPubMedCentralCrossRefGoogle Scholar
  5. Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM (2010) Structure and expression of conserved wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12(5):494–518PubMedCrossRefPubMedCentralGoogle Scholar
  6. Adamska M, Degnan BM, Green K, Zwafink C (2011) What sponges can tell us about the evolution of developmental processes. Zoology 114:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alder H, Schmid V (1987) Cell cycles and in vitro transdifferentiation and regeneration of isolated, striated muscle of jellyfish. Dev Biol 124(2):358–369PubMedCrossRefPubMedCentralGoogle Scholar
  8. Alexander BE, Liebrand K, Osinga R, van der Geest HG, Admiraal W et al (2014) Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS One 9(10):e109486PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alié A, Hayashi T, Sugimura I, Manuel M, Sugano W, Mano A, Satoh N, Agata K, Funayama N (2015) The ancestral gene repertoire of animal stem cells. Proc Natl Acad Sci USA 112(51):E7093–E7100PubMedPubMedCentralGoogle Scholar
  10. Amano S, Hori I (1993) Metamorphosis of calcareous sponges II. Cell rearrangement and differentiation in metamorphosis. Invertebr Reprod Dev 24:13–26CrossRefGoogle Scholar
  11. Arenas-Mena C (2010) Indirect development, transdifferentiation and the macroregulatory evolution of metazoans. Philos Trans R Soc B 365:653–669CrossRefGoogle Scholar
  12. Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302PubMedCrossRefPubMedCentralGoogle Scholar
  13. Borisenko IE, Adamska M, Tokina DB, Ereskovsky AV (2015) Transdifferentiation is a driving force of regeneration in Halisarca dujardini (Demospongiae, Porifera). PeerJ 3:e1211PubMedPubMedCentralCrossRefGoogle Scholar
  14. Borisenko I, Adamski M, Ereskovsky A, Adamska M (2016) Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini. BMC Evol Biol 16:123PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bosch TCG, Adamska M, Augustin R, Domazet-Loso T, Foret S, Fraune S, Funayama N, Grasis J, Hamada M, Hatta M, Hobmayer B, Kawai K, Klimovich A, Manuel M, Shinzato C, Technau U, Yum S, Miller DJ (2014) The case for eco-devo analyses of “lower” animals: what can be learned about environmental influences on development by studying sponges and cnidarians? Bioessays 36:1185–1194PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Nor N, Miyazaki K, Yoshizato K, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88:37–44PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brunet T, King N (2017) The origin of animal multicellularity and cell differentiation. Dev Cell 43(2):124–140. Scholar
  18. Buscema M, De Sutter D, Van de Vyver G (1980) Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes. Wilhelm Roux Arch Dev Biol 188:45–53CrossRefGoogle Scholar
  19. Choi TY, Ninov N, Stainier DYR, Shin D (2014) Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146:776–788PubMedCrossRefPubMedCentralGoogle Scholar
  20. Custodio MR, Prokic I, Steffen R, Koziol C, Borojevic R, Brümmer F, Nickel M, Müller WE (1998) Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech Ageing Dev 105(1–2):45–59PubMedCrossRefPubMedCentralGoogle Scholar
  21. De Lázaro I, Kostarelos K (2016) Engineering cell fate for tissue regeneration by in vivo transdifferentiation. Stem Cell Rev Rep 12:129–139CrossRefGoogle Scholar
  22. Degnan BM, Adamska M, Richards GR, Larroux C, Leininger S, Bergum B, Calcino A, Maritz K, Nakanishi N, Degnan SM (2015) Porifera. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates, vol 1. Springer, Wein, pp 65–106 978-3-7091-1861-0CrossRefGoogle Scholar
  23. Dohrmann M, Wörheide G (2013) Novel scenarios of early animal evolution—is it time to rewrite textbooks? Integr Comp Biol 53:503–511PubMedCrossRefPubMedCentralGoogle Scholar
  24. Eerkes-Medrano DI, Leys SP (2006) Ultrastructure and embryonic development of a syconoid calcareous sponge. Invertebr Biol 125(3):177–194CrossRefGoogle Scholar
  25. Eerkes-Medrano D, Feehan CJ, Leys SP (2015) Sponge cell aggregation: checkpoints in development indicate a high level of organismal complexity. Invertebr Biol 134(1):1–18CrossRefGoogle Scholar
  26. Eguizabal C, Montserrat N, Veiga A, Izpisua Belmonte JC (2013) Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin Reprod Med 31(1):82–94PubMedCrossRefPubMedCentralGoogle Scholar
  27. Elliot GR, Macdonald TA, Leys SP (2004) Sponge larval phototaxis: a comparative study. Boll Mus Ist Biol Univ Genov 68:291–300Google Scholar
  28. Ereskovsky AV (2010) The comparative embryology of sponges. Springer, New YorkCrossRefGoogle Scholar
  29. Ereskovsky AV, Boury-Esnault N (2002) Cleavage pattern in Oscarella species (Porifera, Demospongiae, Homoscleromorpha): transmission of maternal cells and symbiotic bacteria. J Nat Hist 12:1761–1775CrossRefGoogle Scholar
  30. Ereskovsky AV, Tokina DB, Bézac C, Boury-Esnault N (2007) Metamorphosis of cinctoblastula larvae (Homoscleromorpha, Porifera). J Morphol 268:518–528PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ereskovsky AV, Borisenko IE, Lapébie P, Gazave E, Tokina DB et al (2015) Oscarella lobularis (Homoscleromorpha, Porifera) regeneration: epithelial morphogenesis and metaplasia. PLoS One 10(8):e0134566PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ereskovsky AV, Chernogor LI, Belikov SI (2016) Ultrastructural description of development and cell composition of primmorphs in the endemic Baikal sponge Lubomirskia baicalensis. Zoomorphology 135(1):1–17CrossRefGoogle Scholar
  33. Ereskovsky AV, Lavrov AI, Bolshakov FV, Tokina DB (2017) Regeneration in White Sea sponge Leucosolenia complicata (Porifera, Calcarea). Invertebr Zool 14(2):108–113Google Scholar
  34. Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D (2017) Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr Biol 27:3864–3870PubMedCrossRefPubMedCentralGoogle Scholar
  35. Fierro-Constaín L, Schenkelaars Q, Gazave E, Haguenauer A, Rocher C, Ereskovsky A, Borchiellini C, Renard E (2017) The conservation of the germline multipotency program, from sponges to vertebrates: a stepping stone to understanding the somatic and germline origins. Genome Biol Evol 9(3):474–488PubMedPubMedCentralGoogle Scholar
  36. Fortunato S, Adamski M, Mendivil O, Leininger S, Liu J, Ferrier DEK, Adamska M (2014a) Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514(7524):620–623PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fortunato S, Leininger S, Adamska M (2014b) Evolution of the Pax-Six-Eya-Dach network: the calcisponge case study. EvoDevo 5:23PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fortunato SAV, Adamski M, Adamska M (2015) Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar Genomics 2:121–129CrossRefGoogle Scholar
  39. Fortunato SA, Vervoort M, Adamski M, Adamska M (2016) Conservation and divergence of bHLH genes in the calcisponge Sycon ciliatum. EvoDevo 7:23PubMedPubMedCentralCrossRefGoogle Scholar
  40. Franzen W (1988) Oogenesis and larval development of Scypha ciliata (Porifera, Calcarea). Zoomorphology 107:349CrossRefGoogle Scholar
  41. Freedman BD, Kempna PB, Carlone DL, Shah MS, Guagliardo NA, Barrett PQ, Gomez-Sanchez CE, Majzoub JA, Breault DT (2013) Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev Cell 26(6):666–673PubMedPubMedCentralCrossRefGoogle Scholar
  42. Funayama N (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Develop Growth Differ 52:1–14CrossRefGoogle Scholar
  43. Funayama N (2013) The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol 223(1-2):23–38PubMedCrossRefPubMedCentralGoogle Scholar
  44. Funayama N, Nakatsukasa M, Kuraku S, Takechi K, Dohi M, Iwabe N, Miyata T, Agata K (2005) Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the fresh water sponge Ephydatia fluviatilis. Zool Sci 22:1113–1122PubMedCrossRefPubMedCentralGoogle Scholar
  45. Funayama N, Nakatsukasa M, Mohri K, Masuda Y, Agata K (2010) Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges. Evol Dev 12(3):275–287PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fusco G, Carrer R, Serrelli E (2014) The landscape metaphor in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, OxfordGoogle Scholar
  47. Gaino E, Burlando B (1990) Sponge cell motility: a model system for the study of morphogenetic processes. Boll Zool 57(2):109–118CrossRefGoogle Scholar
  48. Gaino E, Burlando B, Buffa P (1987) Structural and ultrastructural aspects of growth in Oscarella lobularis (Porifera, Demospongiae). Growth 51(4):451–460PubMedPubMedCentralGoogle Scholar
  49. Galtsoff PS (1925) Regeneration after dissociation (an experimental study on sponges). I. Behavior of dissociated cells of Microciona prolifera under normal and altered conditions. J Exp Zool 42:183–221CrossRefGoogle Scholar
  50. Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462(7273):587–594PubMedCrossRefPubMedCentralGoogle Scholar
  51. Grogg MW, Call MK, Okamoto M, Vergara MN, Del Rio-Tsonis K, Tsonis PA (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438:858–862PubMedPubMedCentralCrossRefGoogle Scholar
  52. Haeckel E (1870) On the organization of sponges and their relationship to the corals. Ann Mag Nat Hist 5(1–13):107–120CrossRefGoogle Scholar
  53. He J, Lu H, Zou Q, Luo L (2014) Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146:789–800PubMedCrossRefPubMedCentralGoogle Scholar
  54. Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 226:257–267PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hooper JNA, Van Soest RWM (eds) (2002) Systema porifera: a guide to the classification of sponges, vol 2. Kluwer Academic/Plenum Publishers, New York, 1718 pGoogle Scholar
  56. Huxley JS (1911) Some phenomena of regeneration in Sycon; with a note on the structure of its collar-cells. Philos Trans R Soc B 202:165–189CrossRefGoogle Scholar
  57. Huxley JS (1921) Further studies on restitution-bodies and free tissue culture in Sycon. Q J Microsc Sci 65:293–322Google Scholar
  58. James-Clark H (1867) IV.—Conclusive proofs of the animality of the ciliate sponges, and of their affinities with the infusoria flagellate. Ann Mag Nat Hist 19(109):13–18CrossRefGoogle Scholar
  59. Jarriault S, Schwab Y, Greenwald I (2008) A Caenorhabditis elegans model for epithelial-neuronal transdifferentiation. Proc Natl Acad Sci USA 105(10):3790–3795PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev 12:79–89CrossRefGoogle Scholar
  61. Juliano C, Wessel G (2010) Versatile germline genes. Science 329:640–641PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306CrossRefGoogle Scholar
  63. King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325PubMedCrossRefPubMedCentralGoogle Scholar
  64. King N, Rokas A (2017) Embracing uncertainty in reconstructing early animal evolution. Curr Biol 27(19):R1081–R1088PubMedCrossRefPubMedCentralGoogle Scholar
  65. Ladewig J, Koch P, Brüstle O (2013) Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nat Rev Mol Cell Biol 14(4):225–236PubMedCrossRefPubMedCentralGoogle Scholar
  66. Lavrov AI, Kosevich IA (2016) Sponge cell reaggregation: cellular structure and morphogenetic potencies of multicellular aggregates. J Exp Zool A 325:158–177CrossRefGoogle Scholar
  67. Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, Bråte J, Hoffmann F, Fortunato S, Jordal S, Rapp HT, Adamska M (2014) Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nature Commun 5:3905CrossRefGoogle Scholar
  68. Leys SP, Degnan BM (2001) Cytological basis of photoresponsive behavior in a sponge larva. Biol Bull 201(3):323–338PubMedCrossRefGoogle Scholar
  69. Leys SP, Degnan BM (2002) Embryogenesis and metamorphosis in a haplosclerid demosponge: gastrulation and transdifferentiation of larval ciliated cells to choanocytes. Invertebr Biol 121:171–189CrossRefGoogle Scholar
  70. Leys SP, Eerkes-Medrano D (2005) Gastrulation in calcareous sponges: in search of Haeckel’s gastraea. Integr Comp Biol 45(2):342–351PubMedCrossRefPubMedCentralGoogle Scholar
  71. Leys SP, Eerkes-Medrano DI (2006) Feeding in a calcareous sponge: particle uptake by pseudopodia. Biol Bull 211(2):157–171PubMedCrossRefPubMedCentralGoogle Scholar
  72. Leys SP, Mackie GO, Reiswig HM (2007) The biology of glass sponges. Adv Mar Biol 52:1–145PubMedCrossRefPubMedCentralGoogle Scholar
  73. Leys SP, Nichols SA, Adams ED (2009) Epithelia and integration in sponges. Integr Comp Biol 49(2):167–177PubMedCrossRefGoogle Scholar
  74. Mah JL, Christensen-Dalsgaard KK, Leys SP (2014) Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evol Dev 16(1):25–37PubMedCrossRefPubMedCentralGoogle Scholar
  75. Maldonado M (2002) Phylum porifera. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp 21–50Google Scholar
  76. Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123(1):1–22CrossRefGoogle Scholar
  77. Maldonado M (2006) The ecology of the sponge larva. Can J Zool 84(2):175–194CrossRefGoogle Scholar
  78. Manconi R, Pronzato R (1991) Life cycle of Spongilla lacustris (Porifera, Spongillidae): a cue for environment-dependent phenotype. Hydrobiologia 220:155–160CrossRefGoogle Scholar
  79. Manconi R, Pronzato R (2016) How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): a review. Hydrobiologia 782(1):11–22CrossRefGoogle Scholar
  80. McDonald JI, McGuinness KA, Hooper JNA (2003) Influence of re-orientation on alignment to flow and tissue production in a Spongia sp (Porifera: Demospongiae: Dictyoceratida). J Exp Mar Biol Ecol 296:13–22CrossRefGoogle Scholar
  81. Mendola D, van den Boogaart JG, van Leeuwen JL, Wijffels RH (2007) Re-plumbing in a Mediterranean sponge. Biol Lett 3:595–598PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mendola D, de Caralt S, Uriz MJ, van den End F, Van Leeuwen JL, Wijffels RH (2008) Environmental flow regimes for Dysidea avara sponges. Mar Biotechnol (NY) 10:622–630CrossRefGoogle Scholar
  83. Merrell AJ, Stanger BZ (2016) Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17(7):413–425PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mikhailov KV, Konstantinova AV, Nikitin MA, Troshin PV, Rusin LY, Lyubetsky VA, Panchin YV, Mylnikov AP, Moroz LL, Kumar S, Aleoshin VV (2009) The origin of Metazoa: a transition from temporal to spatial cell differentiation. Bioessays 31(7):758–768PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N (2008) Towards understanding the morphogenesis of siliceous spicules in freshwater sponge: differential expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 237:3024–3039PubMedCrossRefPubMedCentralGoogle Scholar
  86. Nakanishi N, Sogabe S, Degnan BM (2014) Evolutionary origin of gastrulation: insights from sponge development. BMC Biol 12:26PubMedPubMedCentralCrossRefGoogle Scholar
  87. Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225:1478–1480PubMedCrossRefPubMedCentralGoogle Scholar
  88. Paulus W, Weissenfels N (1986) The spermatogenesis of Ephydatia fluviatilis (Porifera). Zoomorphology 106:155–162CrossRefGoogle Scholar
  89. Peña JF, Alié A, Richter DJ, Wang L, Funayama N, Nichols SA (2016) Conserved expression of vertebrate microvillar gene homologs in choanocytes of freshwater sponges. EvoDevo 7:13PubMedPubMedCentralCrossRefGoogle Scholar
  90. Piraino S, Boero F, Aeschbach B, Schmid V (1996) Reversing the life cycle: Medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190(3):302–312PubMedCrossRefPubMedCentralGoogle Scholar
  91. Richter DJ, King N (2013) The genomic and cellular foundations of animal origins. Annu Rev Genet 47:509–537PubMedCrossRefPubMedCentralGoogle Scholar
  92. Riesgo A, Taylor C, Leys SP (2007) Reproduction in a carnivorous sponge: the significance of the absence of an aquiferous system to the sponge body plan. Evol Dev 9:618–631PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rivera AS, Ozturk N, Fahey B, Plachetzki DC, Degnan BM, Sancar A, Oakley TH (2012) Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. J Exp Biol 215(8):1278–1286. Scholar
  94. Sancho-Martinez I, Baek SH, Izpisua Belmonte JC (2012) Lineage conversion methodologies meet the reprogramming toolbox. Nat Cell Biol 14(9):892–899PubMedCrossRefPubMedCentralGoogle Scholar
  95. Saville-Kent W (1880) A manual of the infusoria: including a description of all known flagellate, ciliate, and tentaculiferous protozoa, British and foreign, and an account of the organization and the affinities of the sponges. David Bogue, LondonGoogle Scholar
  96. Schmid V, Wydler M, Alder H (1982) Transdifferentiation and regeneration in vitro. Dev Biol 92(2):476–488PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sebé-Pedrós A, Degnan BM, Ruiz-Trillo I (2017) The origin of Metazoa: a unicellular perspective. Nat Rev Genet 18:498–512PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sethmann I, Wörheide G (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39(3):209–228PubMedCrossRefPubMedCentralGoogle Scholar
  99. Simpson TL (1984) The cell biology of sponges. Springer, New YorkCrossRefGoogle Scholar
  100. Sipkema D, van Wielink R, van Lammeren AA, Tramper J, Osinga R, Wijffels RH (2003) Primmorphs from seven marine sponges: formation and structure. J Biotechnol 100(2):127–139PubMedCrossRefPubMedCentralGoogle Scholar
  101. Slack JM (2007) Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8(5):369–378PubMedCrossRefPubMedCentralGoogle Scholar
  102. Solana J (2013) Closing the circle of germline and stem cells: the primordial stem cell hypothesis. EvoDevo 4(1):2–16PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sugimoto K, Gordon SP, Meyerowitz EM (2011) Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 21(4):212–218PubMedCrossRefPubMedCentralGoogle Scholar
  104. Tata PR, Rajagopal J (2016) Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol 43:46–54PubMedPubMedCentralCrossRefGoogle Scholar
  105. Thowfeequ S, Myatt EJ, Tosh D (2007) Transdifferentiation in developmental biology, disease, and in therapy. Dev Dyn 236(12):3208–3217PubMedCrossRefPubMedCentralGoogle Scholar
  106. Tuzet O (1973) Éponges calcaires. In: Grassé P-P (ed) Traité de Zoologie Anatomie, Systématique, Biologie Spongiaires. Masson et Cie, Paris, pp 27–132Google Scholar
  107. Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM (2016) An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep 6:37546PubMedPubMedCentralCrossRefGoogle Scholar
  108. Uriz MJ, Turon X, Becerro MA, Agell G (2003) Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microsc Res Tech 62(4):279–299PubMedCrossRefPubMedCentralGoogle Scholar
  109. Vacelet J, Boury-Esnault N (1995) Carnivorous sponges. Nature 373:333–335CrossRefGoogle Scholar
  110. Voigt O, Adamski M, Sluzek K, Adamska M (2014) Calcareous sponge genomes reveal complex evolution of alpha-carbonic anhydrases and two key biomineralization enzymes. BMC Evol Biol 14:230PubMedPubMedCentralCrossRefGoogle Scholar
  111. Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Allen & Unwin, LondonGoogle Scholar
  112. Weismann A (1892) Das Keimplasma: eine Theorie der Vererbung. Fischer, JenaGoogle Scholar
  113. Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM (2017) Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1(11):1737–1746PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258CrossRefGoogle Scholar
  115. Wolff G (1895) Entwicklungsphysiologische Studien. I. Die regeneration der urodelenlinse. Wilhelm Roux Arch Entwickl Mech Org 1:380–390Google Scholar
  116. Woodland W (1905) Memoirs: studies in spicule formation: I.—the development and structure of the spicules in sycons: with remarks on the conformation, modes of disposition and evolution of spicules in calcareous sponges generally. Q J Microsc Sci 49:231–282Google Scholar
  117. Wulff J (2010) Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? Integr Comp Biol 50:494–505PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zuryn S, Ahier A, Portoso M, White ER, Morin MC, Margueron R, Jarriault S (2014) Sequential histone-modifying activities determine the robustness of transdifferentiation. Science 345(6198):826–829PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Biomedical Science and Biochemistry, Research School of BiologyThe Australian National UniversityCanberraAustralia

Personalised recommendations