Limiting Eigenvectors of Outliers for Spiked Information-Plus-Noise Type Matrices

  • Mireille CapitaineEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2215)


We consider an Information-Plus-Noise type matrix where the Information matrix is a spiked matrix. When some eigenvalues of the random matrix separate from the bulk, we study how the corresponding eigenvectors project onto those of the spikes. Note that, in an Appendix, we present alternative versions of the earlier results of Bai and Silverstein (Random Matrices Theory Appl 1(1):1150004, 44, 2012) (“noeigenvalue outside the support of the deterministic equivalent measure”) and Capitaine (Indiana Univ Math J 63(6):1875–1910, 2014) (“exact separation phenomenon”) where we remove some technical assumptions that were difficult to handle.


Random matrices Spiked information-plus-noise type matrices Eigenvalues Eigenvectors Outliers Deterministic equivalent measure Exact separation phenomenon 



The author is very grateful to Charles Bordenave and Serban Belinschi for several fruitful discussions and thanks Serban Belinschi for pointing out Lemma 4.14. The author also wants to thank an anonymous referee who provided a much simpler proof of Lemma 4.13 and encouraged the author to establish the results for non diagonal perturbations, which led to an overall improvement of the paper.


  1. 1.
    G. Anderson, A. Guionnet, O. Zeitouni, An Introduction to Random Matrices (Cambridge University Press, Cambridge, 2009)Google Scholar
  2. 2.
    Z.D. Bai, J.W. Silverstein, Spectral Analysis of Large-Dimensional Random Matrices. Mathematics Monograph Series, vol. 2 (Science Press, Beijing, 2006)Google Scholar
  3. 3.
    Z. Bai, J.W. Silverstein, No eigenvalues outside the support of the limiting spectral distribution of information-plus-noise type matrices. Random Matrices Theory Appl. 1(1), 1150004, 44 (2012)Google Scholar
  4. 4.
    J.B. Bardet, N. Gozlan, F. Malrieu, P.-A. Zitt, Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence (2018). Bernoulli 24(1), 333–353 (2018)Google Scholar
  5. 5.
    S.T. Belinschi, M. Capitaine, Spectral properties of polynomials in independent Wigner and deterministic matrices. J. Funct. Anal. 273, 3901–3963 (2017).
  6. 6.
    S.T. Belinschi, H. Bercovici, M. Capitaine, M. Février, Outliers in the spectrum of large deformed unitarily invariant models. Ann. Probab. 45(6A), 3571–3625 (2017)Google Scholar
  7. 7.
    F. Benaych-Georges, R.N. Rao, The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227(1), 494–521 (2011)Google Scholar
  8. 8.
    F. Benaych-Georges, R.N. Rao, The singular values and vectors of low rank perturbations of large rectangular random matrices (2011). J. Multivar. Anal. (111), 120–135 (2012)Google Scholar
  9. 9.
    S.G. Bobkov, F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)Google Scholar
  10. 10.
    M. Capitaine, Additive/multiplicative free subordination property and limiting eigenvectors of spiked additive deformations of Wigner matrices and spiked sample covariance matrices. J. Theor. Probab. 26(3), 595–648 (2013)Google Scholar
  11. 11.
    M. Capitaine, Exact separation phenomenon for the eigenvalues of large Information-Plus-Noise type matrices. Application to spiked models. Indiana Univ. Math. J. 63(6), 1875–1910 (2014)Google Scholar
  12. 12.
    M. Capitaine, C. Donati-Martin, Strong asymptotic freeness for Wigner and Wishart matrices. Indiana Univ. Math. J. 56(2), 767–803 (2007)Google Scholar
  13. 13.
    F. Benaych-Georges, C. Bordenave, M. Capitaine, C. Donati-Martin, A. Knowles, Spectrum of deformed random matrices and free probability, in Advanced Topics in Random Matrices, ed. by F. Benaych-Georges, D. Chafaï, S. Péché, B. de Tiliére. Panoramas et syntheses, vol. 53 (2018)Google Scholar
  14. 14.
    R. Couillet, J.W. Silverstein, Z. Bai, M. Debbah, Eigen-inference for energy estimation of multiple sources. IEEE Trans. Inf. Theory 57(4), 2420–2439 (2011)Google Scholar
  15. 15.
    R.B. Dozier, J.W. Silverstein, On the empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices. J. Multivar. Anal. 98(4), 678–694 (2007)Google Scholar
  16. 16.
    R.B. Dozier, J.W. Silverstein, Analysis of the limiting spectral distribution of large dimensional information-plus-noise type matrices. J. Multivar. Anal. 98(6), 1099–1122 (2007)Google Scholar
  17. 17.
    J. Dumont, W. Hachem, S. Lasaulce, Ph. Loubaton, J. Najim, On the capacity achieving covariance matrix for Rician MIMO channels: an asymptotic approach. IEEE Trans. Inf. Theory 56(3), 1048–1069 (2010)Google Scholar
  18. 18.
    A. Guionnet, B. Zegarlinski, Lectures on logarithmic Sobolev inequalities, in Séminaire de Probabilités, XXXVI. Lecture Notes in Mathematics, vol. 1801 (Springer, Berlin, 2003)Google Scholar
  19. 19.
    U. Haagerup, S. Thorbjørnsen, Random matrices with complex Gaussian entries. Expo. Math. 21, 293–337 (2003)Google Scholar
  20. 20.
    U. Haagerup, S. Thorbjørnsen, A new application of random matrices: \(\mathrm {Ext}(C^*_{\mathrm { red}}(F_2))\) is not a group. Ann. Math. (2) 162(2), 711–775 (2005)Google Scholar
  21. 21.
    W. Hachem, P. Loubaton, J. Najim, Deterministic Equivalents for certain functionals of large random matrices. Ann. Appl. Probab. 17(3), 875–930 (2007)Google Scholar
  22. 22.
    A.M. Khorunzhy, B.A. Khoruzhenko, L.A. Pastur, Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37(10), 5033–5060 (1996)Google Scholar
  23. 23.
    O. Ledoit, S. Péché, Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Relat. Fields 151, 233–264 (2011)Google Scholar
  24. 24.
    M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2001)Google Scholar
  25. 25.
    P. Loubaton, P. Vallet, Almost sure localization of the eigenvalues in a Gaussian information-plus-noise model. Application to the spiked models. Electron. J. Probab. 16, 1934–1959 (2011)Google Scholar
  26. 26.
    L.A. Pastur, M. Shcherbina, Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs (American Mathematical Society, Providence, 2011)Google Scholar
  27. 27.
    D. Paul, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat. Sin. 17(4), 1617–1642 (2007)MathSciNetzbMATHGoogle Scholar
  28. 28.
    P. Vallet, P. Loubaton, X. Mestre, Improved subspace estimation for multivariate observations of high dimension: the deterministic signal case. IEEE Trans. Inf. Theory 58(2), 1043–1068 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    D.V. Voiculescu, K. Dykema, A. Nica, Free Random Variables: A Noncommutative Probability Approach to Free Products with Applications to Random Matrices, Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series, vol. 1 (American Mathematical Society, Providence, 1992). ISBN 0-8218-6999-XGoogle Scholar
  30. 30.
    J.-s. Xie, The convergence on spectrum of sample covariance matrices for information-plus-noise type data. Appl. Math. J. Chinese Univ. Ser. B 27(2), 181191 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS, Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations