Nonbonded Interaction: The Chalcogen Bond

  • Eder João Lenardão
  • Claudio Santi
  • Luca Sancineto


Compared to canonical weak, nonbonded interactions, the research on the chalcogen bond (CB) is still in its infancy even if it can be easily considered fascinating. In this chapter a brief summary of its application is given. A general introductory section is detailed to place the CB in the context of weak interactions. Then, such nonbonded interactions are considered from the proteomic perspective, followed by a section focused on the chalcogen bond in drug discovery processes. Its impact on organic synthesis is presented together with few examples of chalcogen bond-assisted catalysis. The conclusive section is devoted to the recently reported examples of CBs in material chemistry.


  1. 1.
    Scheiner S (2003) Nonbonded interactions. In: Bultinck P, De Winter H, Langenaeker W, Tollenaere JP (eds) Computational medicinal chemistry for drug discovery. CRC Press, New York, pp 235–257Google Scholar
  2. 2.
    DiLabio GA, Otero-de-la-Roza A (2016) Noncovalent interactions in density functional theory. In: Parril AL, Lipkowitz KB (eds) Reviews in computational chemistry, vol 29. Wiley, Hoboken, pp 1–97Google Scholar
  3. 3.
    Breugst M, von der Heiden D, Schmauck J (2017) Novel noncovalent interactions in catalysis: a focus on halogen, chalcogen, and anion-π bonding. Synthesis 49:3224–3236CrossRefGoogle Scholar
  4. 4.
    Metrangolo P, Resnati G (2001) Halogen bonding: a paradigm in supramolecular chemistry. Chemistry 7:2511–2519CrossRefPubMedGoogle Scholar
  5. 5.
    Scheiner S (2013) The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds. Acc Chem Res 46:280–288CrossRefPubMedGoogle Scholar
  6. 6.
    Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL (2017) Non-covalent interactions in the synthesis of coordination compounds: recent advances. Coord Chem Rev 345:54–72CrossRefGoogle Scholar
  7. 7.
    Bauzá A, Mooibroek TJ, Frontera A (2013) Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed 52:12317–12321CrossRefGoogle Scholar
  8. 8.
    Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chem Int Ed 54:7340–7343CrossRefGoogle Scholar
  9. 9.
    Brookhart M, Green MLH (1983) Carbon-hydrogen-transition metal bonds. J Organomet Chem 250:395–408CrossRefGoogle Scholar
  10. 10.
    Nagao Y (2013) Chemical pharma-sciences that incorporate non-covalent bonded interactions. Heterocycles 87:1–29CrossRefGoogle Scholar
  11. 11.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296CrossRefPubMedGoogle Scholar
  12. 12.
    Brinck T, Murray JS, Politzer P (1992) Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions. Int J Quantum Chem 44:57–64CrossRefGoogle Scholar
  13. 13.
    Politzer P, Murray JS, Clark T, Resnati G (2017) The σ-hole revisited. Phys Chem Chem Phys 19:32166–32178CrossRefPubMedGoogle Scholar
  14. 14.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) An overview of halogen bonding. J Mol Model 13:305–311CrossRefPubMedGoogle Scholar
  15. 15.
    Pecina A, Lepšík M, Hnyk D, Hobza P, Fanfrlík J (2015) Chalcogen and pnicogen bonds in complexes of neutral icosahedral and bicapped square-antiprismatic heteroboranes. J Phys Chem A 119:1388–1395CrossRefPubMedGoogle Scholar
  16. 16.
    Scheiner S (2013) Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem 113:1609–1620CrossRefGoogle Scholar
  17. 17.
    Mahmudov KT, Kopylovich MN, Guedes da Silva MFC, Pombeiro AJL (2017) Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans 46:10121–10138CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H, Wang W, Jin WJ (2016) σ-Hole bond vs π-hole bond: a comparison based on halogen bond. Chem Rev 116:5072–5104CrossRefPubMedGoogle Scholar
  19. 19.
    Vargas R, Garza J, Dixon DA, Hay BP (2000) How strong is the C α −H···OC hydrogen bond? J Am Chem Soc 122:4750–4755CrossRefGoogle Scholar
  20. 20.
    Gallivan JP, Dougherty DA (2000) A computational study of cation−π interactions vs salt bridges in aqueous media: implications for protein engineering. J Am Chem Soc 122:870–874CrossRefGoogle Scholar
  21. 21.
    Brandl M, Weiss MS, Jabs A, Sühnel J, Hilgenfeld R (2001) C-H⋯π-interactions in proteins. J Mol Biol 307:357–377CrossRefPubMedGoogle Scholar
  22. 22.
    Iwaoka M, Isozumi N (2012) Hypervalent nonbonded interactions of a divalent sulfur atom. Implications in protein architecture and the functions. Molecules 17:7266–7283CrossRefPubMedGoogle Scholar
  23. 23.
    Row TNG, Parthasarathy R (1981) Directional preferences of nonbonded atomic contacts with divalent sulfur in terms of its orbital orientations. 2. Sulfur.cntdot..cntdot..cntdot.sulfur interactions and nonspherical shape of sulfur in crystals. J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  24. 24.
    Iwaoka M, Isozumi N (2006) Possible roles of S···O and S···N interactions in the functions and evolution of phospholipase A2. Biophysics (Oxf) 2:23–34CrossRefGoogle Scholar
  25. 25.
    Moroder L (2005) Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J Pept Sci 11:187–214CrossRefPubMedGoogle Scholar
  26. 26.
    Iwaoka M, Babe N (2015) Mining and structural characterization of S···X chalcogen bonds in protein database. Phosphorus Sulfur Silicon Relat Elem 190:1257–1264CrossRefGoogle Scholar
  27. 27.
    Nachman J, Miller M, Gilliland GL, Carty R, Pincus M, Wlodawer A (1990) Crystal structure of two covalent nucleoside derivatives of ribonuclease A. Biochemistry 29:928–937CrossRefPubMedGoogle Scholar
  28. 28.
    Taylor JC, Markham GD (1999) The bifunctional active site of S-adenosylmethionine synthetase. J Biol Chem 274:32909–32914CrossRefPubMedGoogle Scholar
  29. 29.
    Brandt W, Golbraikh A, Täger M, Lendeckel U (1999) A molecular mechanism for the cleavage of a disulfide bond as the primary function of agonist binding to G-protein-coupled receptors based on theoretical calculations supported by experiments. Eur J Biochem 261:89–97CrossRefPubMedGoogle Scholar
  30. 30.
    Singh AK, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A, Singh TP (2009) Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3-Å resolution. Biophys J 96:646–654CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nakamura T, Yamamoto T, Abe M, Matsumura H, Hagihara Y, Goto T, Yamaguchi T, Inoue T (2008) Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate. Proc Natl Acad Sci U S A 105:6238–6242CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383–4438CrossRefPubMedGoogle Scholar
  33. 33.
    Achibat H, AlOmari NA, Messina F, Sancineto L, Khouili M, Santi C (2015) Organoselenium compounds as phytochemicals from the natural kingdom. Nat Prod Commun 10:1885–1892PubMedGoogle Scholar
  34. 34.
    Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O (2015) Design and synthesis of DiselenoBisBenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J Med Chem 58:9601–9614CrossRefPubMedGoogle Scholar
  35. 35.
    Sancineto L, Piccioni M, De Marco S, Pagiotti R, Nascimento V, Braga AL, Santi C, Pietrella D (2016) Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol 16:220CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bartolini D, Sancineto L, de Bem AF, Tew KD, Santi C, Radi R, Toquato P, Galli F (2017) Selenocompounds in cancer therapy: an overview. Adv Cancer Res 136:259–302CrossRefPubMedGoogle Scholar
  37. 37.
    Santi C, Tidei C, Scalera C, Piroddi M, Galli F (2013) Selenium containing compounds from poison to drug candidates: a review on the GPx-like activity. Curr Chem Biol 7:25–36CrossRefGoogle Scholar
  38. 38.
    Pacuła AJ, Mangiavacchi F, Sancineto L, Lenardão EJ, Ścianowski J, Santi C (2015) An update on “Selenium containing compounds from poison to drug candidates: a review on the GPx-like activity”. Curr Chem Biol 9:97–112CrossRefGoogle Scholar
  39. 39.
    Choi-Sledeski YM, Kearney R, Poli G, Pauls H, Gardner C, Gong Y, Becker M, Davis R, Spada A, Liang G, Chu V, Brown K, Collussi D, Leadley R, Rebello S, Moxey P, Morgan S, Bentley R, Kasiewski C, Maignan S, Guilloteau JP, Mikol V (2003) Discovery of an orally efficacious inhibitor of coagulation factor Xa which incorporates a neutral P 1 ligand. J Med Chem 46:681–684CrossRefPubMedGoogle Scholar
  40. 40.
    Schärfer C, Schulz-Gasch T, Ehrlich HC, Guba W, Rarey M, Stahl M (2013) Torsion angle preferences in druglike chemical space: a comprehensive guide. J Med Chem 56:2016–2028CrossRefPubMedGoogle Scholar
  41. 41.
    Tajima H, Honda T, Kawashima K, Sasabuchi Y, Yamamoto M, Ban M, Okamoto K, Inoue K, Inaba T, Takeno Y, Aono H (2010) Pyridylmethylthio derivatives as VEGF inhibitors. Part 1. Bioorg Med Chem Lett 20:7234–7238CrossRefPubMedGoogle Scholar
  42. 42.
    Tajima H, Honda T, Kawashima K, Sasabuchi Y, Yamamoto M, Ban M, Okamoto K, Inoue K, Inaba T, Takeno Y, Tsuboi T, Tonouchi A, Aono H (2011) Pyridylmethylthio derivatives as VEGF inhibitors: Part 2. Bioorg Med Chem Lett 21:1232–1235CrossRefPubMedGoogle Scholar
  43. 43.
    Lin S, Wrobleski ST, Hynes J, Pitt S, Zhang R, Fan Y, Doweyko AM, Kish KF, Sack JS, Malley MF, Kiefer SE, Newitt JA, McKinnon M, Trzaskos J, Barrish JC, Dodd JH, Schieven GL, Leftheris K (2010) Utilization of a nitrogen–sulfur nonbonding interaction in the design of new 2-aminothiazol-5-yl-pyrimidines as p38α MAP kinase inhibitors. Bioorg Med Chem Lett 20:5864–5868CrossRefPubMedGoogle Scholar
  44. 44.
    Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Keys JR, Land vatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746CrossRefPubMedGoogle Scholar
  45. 45.
    Dominguez C, Powers DA, Tamayo N (2005) p38 MAP kinase inhibitors: many are made, but few are chosen. Curr Opin Drug Discov Dev 8:421–430Google Scholar
  46. 46.
    Burling FT, Goldstein BM (1992) Computational studies of nonbonded sulfur-oxygen and selenium-oxygen interactions in the thiazole and selenazole nucleosides. J Am Chem Soc 114:2313–2320CrossRefGoogle Scholar
  47. 47.
    Goldstein BM, Takusagawa F, Berman HW, Srivastava PC, Robins RK (1985) Structural studies of a new antitumor and antiviral agent: selenazofurin and its .alpha. anomer. J Am Chem Soc 107:1394–1400CrossRefGoogle Scholar
  48. 48.
    Gebeyehu G, Marquez VE, Van Cott A, Cooney DA, Kelley JA, Jayaram HN, Ahluwalia GS, Dion RL, Wilson YA, Johns DG (1985) Ribavirin, tiazofurin, and selenazofurin: mononucleotides and nicotinamide adenine dinucleotide analogs. Synthesis, structure, and interactions with IMP dehydrogenase. J Med Chem 28:99–105CrossRefPubMedGoogle Scholar
  49. 49.
    Park H, Hong S, Kim J, Hong S (2013) Discovery of picomolar ABL kinase inhibitors equipotent for wild type and T315I mutant via structure-based de novo design. J Am Chem Soc 135:8227–8237CrossRefPubMedGoogle Scholar
  50. 50.
    Hong S, Kim J, Yun SM, Lee H, Park Y, Hong SS, Hong S (2013) Discovery of new benzothiazole-based inhibitors of breakpoint cluster region-Abelson kinase including the T315I mutant. J Med Chem 56:3531–3545CrossRefPubMedGoogle Scholar
  51. 51.
    Félix-Sonda BC, Rivera-Islas J, Herrera-Ruiz D, Morales-Rojas H, Höpfl H (2014) Nitazoxanide cocrystals in combination with succinic, glutaric, and 2,5-dihydroxybenzoic acid. Cryst Growth Des 14:1086–1102CrossRefGoogle Scholar
  52. 52.
    Thomas SP, Veccham SPKP, Farrugia LJ, Guru Row TN (2015) “Conformational simulation” of sulfamethizole by molecular complexation and insights from charge density analysis: role of intramolecular S···O chalcogen bonding. Cryst Growth Des 15:2110–2118CrossRefGoogle Scholar
  53. 53.
    Rodríguez S, Kneeteman M, Izquierdo J, López I, González FV, Peris G (2006) Diastereoselective synthesis of γ-hydroxy Α,β-epoxyesters and their conversion into β-hydroxy α-sulfenyl γ-butyrolactones. Tetrahedron 62:11112–11123CrossRefGoogle Scholar
  54. 54.
    González FV, Jain A, Rodríguez S, Sáez JA, Vicent C, Peris G (2010) Stereoisomerization of β-hydroxy-α-sulfenyl-γ-butyrolactones controlled by two concomitant 1,4-type nonbonded sulfur−oxygen interactions as analyzed by X-ray crystallography. J Org Chem 75:5888–5894CrossRefPubMedGoogle Scholar
  55. 55.
    Wirth T (ed) (2000) Organoselenium chemistry: modern developments in organic synthesis, vol 208. Springer, BerlinGoogle Scholar
  56. 56.
    Wirth T (1999) Chiral selenium compounds in organic synthesis. Tetrahedron 55:1–28CrossRefGoogle Scholar
  57. 57.
    Santi C, Tomassini C, Sancineto L (2017) Organic diselenides: versatile reagents, precursors, and intriguing biologically active compounds. Chimia 71:592–595CrossRefPubMedGoogle Scholar
  58. 58.
    Wirth T (2000) Organoselenium chemistry in stereoselective reactions. Angew Chem 39:3740–3749CrossRefGoogle Scholar
  59. 59.
    Tiecco M, Testaferri L, Bagnoli L, Marini F, Temperini A, Tomassini C, Santi C (2000) Efficient asymmetric selenomethoxylation and selenohydroxylation of alkenes with a new sulfur containing chiral diselenide. Tetrahedron Lett 41:3241–3245CrossRefGoogle Scholar
  60. 60.
    Tiecco M, Testaferri L, Marini F, Sternativo S, Bagnoli L, Santi C, Temperini A (2001) Sulfur-containing diselenide as an efficient chiral reagent in asymmetric selenocyclization reactions. Tetrahedron Asymmetry 12:1493–1502CrossRefGoogle Scholar
  61. 61.
    Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A (2002) Preparation of a new chiral non-racemic sulfur-containing diselenide and applications in asymmetric synthesis. Chem Eur J 8:1118–1124CrossRefPubMedGoogle Scholar
  62. 62.
    Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A (2003) Asymmetric azidoselenenylation of alkenes: a key step for the synthesis of enantiomerically enriched nitrogen-containing compounds. Angew Chem Int Ed 42:3131–3133CrossRefGoogle Scholar
  63. 63.
    Robinson DEJE, Bull SD (2003) Kinetic resolution strategies using non-enzymatic catalysts. Tetrahedron Asymmetry 14:1407–1446CrossRefGoogle Scholar
  64. 64.
    Tiecco M, Testaferri L, Santi C, Tomassini C, Bonini R, Marini F, Bagnoli L, Temperini A (2004) Chiral electrophilic selenium reagent to promote the kinetic resolution of racemic allylic alcohols. Org Lett 6:4751–4753CrossRefPubMedGoogle Scholar
  65. 65.
    Tomassini C, Sarra FD, Monti B, Sancineto L, Bagnoli L, Marini F, Santi C (2017) Kinetic resolution of 2-methoxycarbonylalk-3-enols through a stereoselective cyclofunctionalization promoted by an enantiomerically pure electrophilic selenium reagent. ARKIVOC 2:303–312Google Scholar
  66. 66.
    Tiecco M, Testaferri L, Santi C, Tomassini C, Santoro S, Marini F, Bagnoli L, Temperini A, Costantino F (2006) Intramolecular nonbonding interactions between selenium and sulfur – spectroscopic evidence and importance in asymmetric synthesis. Eur J Org Chem 2006:4867–4873CrossRefGoogle Scholar
  67. 67.
    Iwaoka M, Komatsu H, Katsuda T, Tomoda S (2004) Nature of nonbonded Se···O interactions characterized by 17 O NMR spectroscopy and NBO and AIM analyses. J Am Chem Soc 126:5309–5317CrossRefPubMedGoogle Scholar
  68. 68.
    Takaluoma EM, Takaluoma TT, Oilunkaniemi R, Laitinen RS (2015) Structure and bonding in Bis(1-naphthyl) diselenide and bis{[2-(N , N -dimethylamino)methyl]phenyl} tetraselenide, and their brominated derivatives. Z Anorg Allg Chem 641:772–779CrossRefGoogle Scholar
  69. 69.
    Zhu C, Yoshimura A, Ji L, Wei Y, Nemykin VN, Zhdankin VV (2012) Design, preparation, X-ray crystal structure, and reactivity of O-alkoxyphenyliodonium bis(methoxycarbonyl)methanide, a highly soluble carbene precursor. Org Lett 14:3170–3173CrossRefPubMedGoogle Scholar
  70. 70.
    Patra A, Wijsboom YH, Leitus G, Bendikov M (2009) Synthesis, structure, and electropolymerization of 3,4-dimethoxytellurophene: comparison with selenium analogue. Org Lett 11:1487–1490CrossRefPubMedGoogle Scholar
  71. 71.
    Mikherdov AS, Kinzhalov MA, Novikov AS, Boyarskiy VP, Boyarskaya IA, Dar’in DV, Starova GL, Kukushkin VY (2016) Difference in energy between two distinct types of chalcogen bonds drives regioisomerization of binuclear (diaminocarbene)Pd II complexes. J Am Chem Soc 138:14129–14137CrossRefGoogle Scholar
  72. 72.
    Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  73. 73.
    Ho PC, Szydlowski P, Sinclair J, Elder PJW, Kübel J, Gendy C, Lee LM, Jenkins H, Britten JF, Morim DR, Vargas-Baca I (2016) Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding. Nat Commun 7:11299CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Knowles RR, Jacobsen EN (2010) Attractive noncovalent interactions in asymmetric catalysis: links between enzymes and small molecule catalysts. Proc Natl Acad Sci U S A 107:20678–20685CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Davis HJ, Phipps RJ (2017) Harnessing non-covalent interactions to exert control over regioselectivity and site-selectivity in catalytic reactions. Chem Sci 8:864–877CrossRefPubMedGoogle Scholar
  76. 76.
    Wheeler SE, Seguin TJ, Guan Y, Doney AC (2016) Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc Chem Res 49:1061–1069CrossRefPubMedGoogle Scholar
  77. 77.
    Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Benz S, López-Andarias J, Mareda J, Sakai N, Matile S (2017) Catalysis with chalcogen bonds. Angew Chem Int Ed 56:812–815CrossRefGoogle Scholar
  79. 79.
    Benz S, Mareda J, Besnard C, Sakai N, Matile S (2017) Catalysis with chalcogen bonds: neutral benzodiselenazole scaffolds with high-precision selenium donors of variable strength. Chem Sci 8:8164–8169CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wonner P, Vogel L, Düser M, Gomes L, Kniep F, Mallick B, Werz DB, Huber SM (2017) Carbon-halogen bond activation by selenium-based chalcogen bonding. Angew Chem Int Ed 56:12009–12012CrossRefGoogle Scholar
  81. 81.
    Fukata Y, Asano K, Matsubara S (2015) Facile net cycloaddition approach to optically active 1,5-benzothiazepines. J Am Chem Soc 137:5320–5323CrossRefPubMedGoogle Scholar
  82. 82.
    Suzuki T, Fujii H, Yamashita Y, Kabuto C, Tanaka S, Harasawa M, Mukai T, Miyashi T (1992) Clathrate formation and molecular recognition by novel chalcogen-cyano interactions in tetracyanoquinodimethanes fused with thiadiazole and selenadiazole rings. J Am Chem Soc 114:3034–3043CrossRefGoogle Scholar
  83. 83.
    Zhao H, Gabbaï FP (2010) A bidentate Lewis acid with a telluronium ion as an anion-binding site. Nat Chem 2:984–990CrossRefPubMedGoogle Scholar
  84. 84.
    Garrett GE, Carrera EI, Seferos DS, Taylor MS (2016) Anion recognition by a bidentate chalcogen bond donor. Chem Commun 52:9881–9884CrossRefGoogle Scholar
  85. 85.
    Benz S, Macchione M, Verolet Q, Mareda J, Sakai N, Matile S (2016) Anion transport with chalcogen bonds. J Am Chem Soc 138:9093–9096CrossRefPubMedGoogle Scholar
  86. 86.
    Dutton JL, Martin CD, Sgro MJ, Jones ND, Ragogna PJ (2009) Synthesis of N,C bound sulfur, selenium, and tellurium heterocycles via the reaction of chalcogen halides with −CH 3 substituted diazabutadiene ligands. Inorg Chem 48:3239–3247CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eder João Lenardão
    • 1
  • Claudio Santi
    • 2
  • Luca Sancineto
    • 3
  1. 1.CCQFA - LASOLUniversidade Federal de PelotasPelotasBrazil
  2. 2.Department of Pharmaceutical SciencesUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Section of Heterorganic ChemistryCentre of Molecular and Macromolecular Studies, Polish Academy of SciencesŁódźPoland

Personalised recommendations