Advertisement

Organoselenium Compounds as Reagents and Catalysts to Develop New Green Protocols

  • Eder João Lenardão
  • Claudio Santi
  • Luca Sancineto
Chapter

Abstract

This chapter offers a comprehensive and updated overview on the use of organoselenium compounds as catalysts in organic synthesis. Around 150 references were carefully revised, covering the recent advances in established Se-catalyzed reactions, like the hydrogen peroxide activation and the new frontiers in this fascinating branch of the selenium chemistry, including Lewis base catalysis and selenium-π-acid catalysis. As the reader will note in the pages of this chapter, the combination of the Se-organocatalysis with the use of alternative green solvents (water, perfluorinated, ionic liquids, glycerol-based solvents, etc.), atom-economic reactions, use of green oxidants (H2O2, air), and solid supported catalysis makes Se-catalyzed reactions a feasible and robust green alternative in organic synthesis. The mechanism, scope, and limitations of the reactions displayed in the chapter are presented and discussed, giving subsidies to the reader for a clear understanding of the state of the art in the use of organoselenium compounds as a catalyst in organic synthesis.

References

  1. 1.
    Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arner ES (2003) Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci U S A 100:12618–12623PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hondal RJ, Marino SM, Gladyshev VN (2013) Selenocysteine in thiol/disulfide-like exchange reactions. Antiox Redox Signal 18:1675–1689CrossRefGoogle Scholar
  3. 3.
    Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl 42:4742–4758PubMedCrossRefGoogle Scholar
  4. 4.
    Santi C, Tidei C, Scalera C (2013) Selenium containing compounds: from poison to drug candidates (a review on the GPx-like activity). Curr Chem Biol 7:25–36CrossRefGoogle Scholar
  5. 5.
    Müller A, Cadenas E, Graf P, Sies H (1984) A novel biologically active seleno-organic compound-I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol 33:3235–3239PubMedCrossRefGoogle Scholar
  6. 6.
    Wendel A, Fausel M, Safayhi H, Tiegs G, Otter R (1984) A novel biologically active seleno-organic compound-II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol 33:3241–3245PubMedCrossRefGoogle Scholar
  7. 7.
    Bhowmick D, Mugesh G (2015) Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Org Biomol Chem 13:10262–10272PubMedCrossRefGoogle Scholar
  8. 8.
    Santi C, Santoro S, Battiste B (2010) Organoselenium compounds as catalysts in nature and laboratory. Curr Org Chem 14:2442–2462CrossRefGoogle Scholar
  9. 9.
    Nishibayashi Y, Uemura S (2000) Selenium compounds as ligands and catalysis. In: Wirth T (ed) Organoselenium chemistry - modern developments in organic synthesis, Topics in current chemistry, vol 208. Springer, Heidelberg, pp 235–255Google Scholar
  10. 10.
    With T (1999) Chiral selenium compounds in organic synthesis. Tetrahedron 55:1–28Google Scholar
  11. 11.
    Singh FV, Wirth T (2012) Selenium compounds as ligands and catalysts. In: Wirth T (ed) Organoselenium chemistry - synthesis and reactions. Wiley-VCH Verlag & Co., Weinheim, pp 321–360Google Scholar
  12. 12.
    Santoro S, Azeredo JB, Nascimento V, Sancineto L, Braga AL, Santi C (2014) The green side of the moon: ecofriendly aspects of organoselenium chemistry. RSC Adv 4:31521–31535CrossRefGoogle Scholar
  13. 13.
    Młochowski J, Wójtowicz-Młochowska H (2015) Developments in synthetic application of selenium(IV) oxide and organoselenium compounds as oxygen donors and oxygen-transfer agents. Molecules 20:10205–10243PubMedCrossRefGoogle Scholar
  14. 14.
    Młochowski J, Brząszcz M, Chojnacka M, Giurg M, Wójtowicz H (2004) Diaryl diselenides and benzisoselenazol-3(2H)-ones as oxygen transfer agents. ARKIVOC 2004:226–248CrossRefGoogle Scholar
  15. 15.
    Młochowski J, Brząszcz M, Giurg M, Palus J, Wójtowicz H (2008) Selenium-promoted oxidation of organic compounds: reactions and mechanisms. Eur J Org Chem 2003:4329–4339CrossRefGoogle Scholar
  16. 16.
    Giurg M, Syper L (2008) Diaryl diselenides and related compounds as oxygen-transfer agents. Phosphorus Sulfur Silicon Relat Elem 183:970–985CrossRefGoogle Scholar
  17. 17.
    Młochowski J, Peczynska-Czoch W, Pietka-Ottlik M, Wójtowicz-Młochowska H (2011) Non-metal and enzymatic catalysts for hydroperoxide oxidation of organic compounds. Open Cat J 4:54–82CrossRefGoogle Scholar
  18. 18.
    Freudendahl DM, Santoro S, Shahzad SA, Santi S, Wirth T (2009) Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew Chem Int Ed 48:8409–8411CrossRefGoogle Scholar
  19. 19.
    Back TG (2009) Design and synthesis of some biologically interesting natural and unnatural products based on organosulfur and selenium chemistry. Can J Chem 87:1657–1674CrossRefGoogle Scholar
  20. 20.
    Alberto EE, Braga AL (2011) Activation of peroxides by organoselenium catalysts: a synthetic and biological perspective. In: Woollins JD, Laitinen RS (eds) Selenium and tellurium chemistry. Springer, Berlin, pp 251–283CrossRefGoogle Scholar
  21. 21.
    Tiecco M (2000) Electrophilic selenium, selenocyclizations. In: Wirth T (ed) Organoselenium chemistry - modern developments in organic synthesis, Topics in current chemistry, vol 208. Springer, Heidelberg, pp 7–53Google Scholar
  22. 22.
    Santi C, Tidei C (2014) Electrophilic selenium/tellurium reagents: reactivity and their contribution to green chemistry. In: Rappoport Z, Liebman JF, Marek I, Patai S (eds) The chemistry of organic selenium and tellurium compounds, vol 4. Wiley, New York, pp 569–656Google Scholar
  23. 23.
    Guo R, Liao L, Zhao X (2017) Electrophilic selenium catalysis with electrophilic N-F reagents as the oxidants. Molecules 22:835.  https://doi.org/10.3390/molecules22050835CrossRefGoogle Scholar
  24. 24.
    Ortgies S, Breder A (2017) Oxidative alkene functionalizations via selenium-π-acid catalysis. ACS Catal 7:5828–5840CrossRefGoogle Scholar
  25. 25.
    Freudendahl DM, Shahzad SA, Wirth T (2009) Recent advances in organoselenium chemistry. Eur J Org Chem 2009:1649–1664CrossRefGoogle Scholar
  26. 26.
    Breder A, Ortgies S (2015) Recent developments in sulfur- and selenium-catalyzed oxidative and isohypsic functionalization reactions of alkenes. Tetrahedron Lett 56:2843–2852CrossRefGoogle Scholar
  27. 27.
    Tidei C, Santi C (2014) Selenium and “bio-logic” catalysis: new bioinspired catalytic reactions. In: Santi C (ed) Organoselenium chemistry: between synthesis and biochemistry. Bentham Science, Sharjah, pp 345–360.  https://doi.org/10.2174/97816080583891140101CrossRefGoogle Scholar
  28. 28.
    Denmark SE, Jaunet A (2014) Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. Preparative and stereochemical aspects. J Org Chem 79:140–171PubMedCrossRefGoogle Scholar
  29. 29.
    Chabaud B, Sharpless KB (1979) Selenium-catalyzed nonradical chlorination of olefins with N-chlorosuccinimide. J Org Chem 44:4204–4208CrossRefGoogle Scholar
  30. 30.
    Hori T, Sharpless KB (1979) Conversion of allylic phenylselenides to the rearranged allylic chlorides by N-chlorosuccinimide. Mechanism of selenium-catalyzed allylic chlorination of α-pinene. J Org Chem 44:4208–4210CrossRefGoogle Scholar
  31. 31.
    Tiecco M, Testaferri L, Temperini A, Marini F, Bagnoli L, Santi C (1999) Selenium promoted stereospecific one-pot conversion of cinnamyl derivatives into oxazoles. A simple synthetic route to racemic taxol side chain. Synth Commun 29:1773–1778CrossRefGoogle Scholar
  32. 32.
    Tiecco M, Testaferri L, Santi C (1999) Catalytic oxyselenenylation-deselenenylation reactions of alkenes-stereoselective one-pot conversion of 3-alkenols into 2,5-dihydrofurans. Eur J Org Chem 1999:797–803CrossRefGoogle Scholar
  33. 33.
    Tiecco M, Testaferri L, Tingoli M, Marini F (1994) Selenium promoted conversion of α-substituted β,γ-unsaturated ketones into 2,3,5-trisubstituted furans. Synlett 1994:373–374CrossRefGoogle Scholar
  34. 34.
    Tiecco M, Testaferri L, Tingoli M, Bagnoli L, Santi C (1993) Catalytic conversion of β,γ-unsaturated esters, amides and nitriles into γ-alkoxy or γ-hydroxy α,β-unsaturated derivatives induced by persulfate anion oxidation of diphenyl diselenide. J Chem Soc Chem Commun 1993:637–639CrossRefGoogle Scholar
  35. 35.
    lwaoka M, Tomoda S (1992) Catalytic conversion of alkenes into allylic ethers and esters using diselenides having internal tertiary amines. J Chem Soc Chem Commun 1992:1165–1167Google Scholar
  36. 36.
    Tiecco M, Testaferri L, Tingoli M, Bartoli D, Marini F (1991) Selenium-promoted conversion of β-diketones and β-keto esters into α,α-dimethoxy β-diketones and α,α-dimethoxy β-keto esters. J Org Chem 56:5207–5210CrossRefGoogle Scholar
  37. 37.
    Tiecco M, Testaferri L, Tingoli M, Chianelli D, Bartoli D (1991) Selenium-mediated conversion of alkynes into α-dicarbonyl compounds. J Org Chem 56:4529–4534CrossRefGoogle Scholar
  38. 38.
    Tiecco M, Testaferri L, Tingoli M, Bartoli D (1990) Selenium-catalyzed conversion of methyl ketones into α-keto acetals. J Org Chem 55:4523–4528CrossRefGoogle Scholar
  39. 39.
    Tingoli M, Mazzella M, Panunzi B, Tuzi A (2011) Elemental iodine or diphenyl diselenide in the [bis(trifluoroacetoxy)-iodo] benzene-mediated conversion of alkynes into 1,2-diketones. Eur J Org Chem 2011:399–404CrossRefGoogle Scholar
  40. 40.
    Singh FV, Wirth T (2011) Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org Lett 13:6504–6507PubMedCrossRefGoogle Scholar
  41. 41.
    Shahzad SA, Venin C, Wirth T (2010) Diselenide- and disulfide-mediated synthesis of isocoumarins. Eur J Org Chem 2010:3465–3472CrossRefGoogle Scholar
  42. 42.
    Browne DM, Niyomura O, Wirth T (2007) Catalytic use of selenium electrophiles in cyclizations. Org Lett 9:3169–3171PubMedCrossRefGoogle Scholar
  43. 43.
    Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, Lautens M (2014) Organoselenium-catalyzed mild dehydration of aldoximes: an unexpected practical method for organonitrile synthesis. Org Lett 16:1346–1349PubMedCrossRefGoogle Scholar
  44. 44.
    Yu L, Wu Y, Cao H, Zhang X, Shi X, Luan J, Chen T, Pan Y, Xu Q (2014) Facile synthesis of 2-methylenecyclobutanones via Ca(OH)2-catalyzed direct condensation of cyclobutanone with aldehydes and (PhSe)2-catalyzed Baeyer-Villiger oxidation to 4-methylenebutanolides. Green Chem 16:287–293CrossRefGoogle Scholar
  45. 45.
    Santi C, Lorenzo RD, Tidei C, Bagnoli L, Wirth T (2012) Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron 68:10530–10535CrossRefGoogle Scholar
  46. 46.
    Santoro S, Santi C, Sabatini M, Testaferri L, Tiecco M (2008) Eco-friendly olefin dihydroxylation catalyzed by diphenyl diselenide. Adv Synth Catal 350:2881–2884CrossRefGoogle Scholar
  47. 47.
    Ichikawa H, Usami Y, Arimoto M (2005) Synthesis of novel organoselenium as catalyst for Baeyer-Villiger oxidation with 30% H2O2. Tetrahedron Lett 46:8665–8668CrossRefGoogle Scholar
  48. 48.
    ten Brink GJ, Vis JM, Arends IWCE, Sheldon RA (2001) Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. Baeyer-Villiger reactions in homogeneous solution. J Org Chem 66:2429–2433PubMedCrossRefGoogle Scholar
  49. 49.
    Torii S, Uneyama K, Ono M, Bannou T (1981) Generation and recycle use of selenenylating reagents in electrochemical oxyselenenylation-deselenenylation of olefins. J Am Chem Soc 103:4606–4608CrossRefGoogle Scholar
  50. 50.
    Van der Toorn JC, Kemperman G, Sheldon RA, Arends IWCE (1990) Electroreductive ring-opening of α,β-epoxy carbonyl compounds and their homologues through recyclable use of diphenyl diselenide or diphenyl ditelluride as a mediator. J Org Chem 55:1548–1553CrossRefGoogle Scholar
  51. 51.
    Niyomura O, Cox M, Wirth T (2006) Electrochemical generation and catalytic use of selenium electrophiles. Synlett 2006:251–254Google Scholar
  52. 52.
    Van der Toorn JC, Kemperman G, Sheldon RA, Arends IWCE (2009) Diphenyldiselenide-catalyzed selective oxidation of activated alcohols with tert-butyl hydroperoxide: new mechanistic insights. J Org Chem 74:3085–3089PubMedCrossRefGoogle Scholar
  53. 53.
    Torii S, Uneyama K, Ono M (1980) Novel synthesis of DL-marmelolactone and DL-rose oxide by electrochemical oxyselenenylation-deselenenylation sequence. Tetrahedron Lett 21:2653–2654CrossRefGoogle Scholar
  54. 54.
    Fujita K, Iwaoka M, Tomoda S (1994) Synthesis of diaryl diselenides having chiral pyrrolidine rings with C2 symmetry. Their application to the asymmetrical methoxyselenenylation of trans-β-methylstyrenes. Chem Lett 1994:923–926CrossRefGoogle Scholar
  55. 55.
    Fukuzawa S, Takahashi K, Kato H, Yamazaki H (1997) Asymmetric methoxyselenenylation of alkenes with chiral ferrocenylselenium reagents. J Org Chem 62:7711–7716CrossRefGoogle Scholar
  56. 56.
    Wirth T, Häuptli S, Leuenberger M (1998) Catalytic asymmetric oxyselenenylation-elimination reactions using chiral selenium compounds. Tetrahedron-Asymmetry 9:547–550CrossRefGoogle Scholar
  57. 57.
    Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A (2000) New nitrogen containing chiral diselenides: synthesis and asymmetric addition reactions to olefins. Tetrahedron-Asymmetry 11:4645–4650CrossRefGoogle Scholar
  58. 58.
    Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A (2002) Preparation of a new chiral non-racemic sulfur-containing diselenide and applications in asymmetric synthesis. Chem Eur J 8:1118–1124PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Tunge JA, Mellegaard SR (2004) Selective selenocatalytic allylic chlorination. Org Lett 6:1205–1207PubMedCrossRefGoogle Scholar
  60. 60.
    Trenner J, Depken C, Weber T, Breder A (2013) Direct oxidative allylic and vinylic amination of alkenes through selenium catalysis. Angew Chem Int Ed 52:8952–8956CrossRefGoogle Scholar
  61. 61.
    Deng Z, Wei J, Liao L, Huang H, Zhao X (2015) Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols. Org Lett 17:1834–1837PubMedCrossRefGoogle Scholar
  62. 62.
    Ortgies S, Breder A (2015) Selenium-catalyzed oxidative C(sp2)-H amination of alkenes exemplified in the expedient synthesis of (aza-)indoles. Org Lett 17:2748–2751PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang X, Guo R, Zhao X (2015) Organoselenium-catalyzed synthesis of indoles through intramolecular C-H amination. Org Chem Front 2:1334–1337CrossRefGoogle Scholar
  64. 64.
    Guo R, Huang J, Huang H, Zhao X (2016) Organoselenium-catalyzed synthesis of oxygen- and nitrogen-containing heterocycles. Org Lett 18:504–507PubMedCrossRefGoogle Scholar
  65. 65.
    Liao L, Guo R, Zhao X (2017) Organoselenium-catalyzed regioselective C-H pyridination of 1,3-dienes and alkenes. Angew Chem Int Ed 56:3201–3205CrossRefGoogle Scholar
  66. 66.
    Krätzschmar F, Kaßel M, Delony D, Breder A (2015) Selenium-catalyzed C(sp3)-H acyloxylation: application in the expedient synthesis of isobenzofuranones. Chem Eur J 21:7030–7035PubMedCrossRefGoogle Scholar
  67. 67.
    Kawamata Y, Hashimoto T, Maruoka K (2016) A chiral electrophilic selenium catalyst for highly enantioselective oxidative cyclization. J Am Chem Soc 138:5206–5209PubMedCrossRefGoogle Scholar
  68. 68.
    Ortgies S, Depken C, Breder A (2016) Oxidative allylic esterification of alkenes by cooperative selenium-catalysis using air as the sole oxidant. Org Lett 18:2856–2859PubMedCrossRefGoogle Scholar
  69. 69.
    Leisering S, Riaño I, Depken C, Gross LJ, Weber M, Lentz D, Zimmer R, Stark CBW, Breder A, Christmann M (2017) Synthesis of (+)-Greek tobacco lactone via a diastereoablative epoxidation and a selenium-catalyzed oxidative cyclization. Org Lett 19:1478–1481PubMedCrossRefGoogle Scholar
  70. 70.
    Browne DM, Niyomura O, Wirth T (2008) Catalytic addition-elimination reactions towards butenolides. Phosphorus Sulfur Silicon 183:1026–1035CrossRefGoogle Scholar
  71. 71.
    Fragale G, Wirth T (1998) Chiral diselenides in asymmetric cyclization reactions. Eur J Org Chem 1998:1361–1369CrossRefGoogle Scholar
  72. 72.
    Cresswell AJ, Eey STC, Denmark SE (2015) Catalytic, stereospecific syn-dichlorination of alkenes. Nat Chem 7:146–152PubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang C, Tunge J (2004) Selenocatalytic α-halogenation. Chem Commun 2004:2694–2695CrossRefGoogle Scholar
  74. 74.
    Mellegaard-Waetzig SR, Wang C, Tunge JA (2006) Selenium-catalyzed oxidative halogenation. Tetrahedron 62:7191–7198CrossRefGoogle Scholar
  75. 75.
    Barrero AF, Quílez del Moral JF, Mar Herrador M, Cortés M, Arteaga P, Catalán JV, Sánchez EM, Arteaga JF (2006) Solid-phase selenium-catalyzed selective allylic chlorination of polyprenoids: facile syntheses of biologically active terpenoids. J Org Chem 71:5811–5814PubMedCrossRefGoogle Scholar
  76. 76.
    Denmark SE, Beutner GL (2008) Lewis base catalysis in organic synthesis. Angew Chem Int Ed 47:1560–1638CrossRefGoogle Scholar
  77. 77.
    Mellegaard SR, Tunge JA (2004) Selenium-catalyzed halolactonization: nucleophilic activation of electrophilic halogenating reagents. J Org Chem 69:8979–8981PubMedCrossRefGoogle Scholar
  78. 78.
    Carrera I, Brovetto MC, Seoane GA (2006) Selenium-catalyzed iodohydrin formation from alkenes. Tetrahedron Lett 47:7849–7852CrossRefGoogle Scholar
  79. 79.
    Tay DW, Tsoi IT, Er JC, Leung GYC, Yeung YY (2013) Lewis basic selenium catalyzed chloroamidation of olefins using nitriles as the nucleophiles. Org Lett 15:1310–1313PubMedCrossRefGoogle Scholar
  80. 80.
    Luo J, Zhu Z, Liu Y, Zhao X (2015) Diaryl selenide catalyzed vicinal trifluoromethylthioamination of alkenes. Org Lett 17:3620–3623PubMedCrossRefGoogle Scholar
  81. 81.
    Zhu Z, Luo J, Zhao X (2017) Combination of Lewis basic selenium catalysis and redox selenium chemistry: synthesis of trifluoromethylthiolated tertiary alcohols with alkenes. Org Lett 19:4940–4943PubMedCrossRefGoogle Scholar
  82. 82.
    Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S (2012) Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols. J Org Chem 77:9541–9552PubMedCrossRefGoogle Scholar
  83. 83.
    Boualy B, El Houssame S, Sancineto L, Santi C, Ait Ali M, Stoeckli-Evans H, El Firdoussi L (2016) A mild and efficient method for the synthesis of a new optically active diallyl selenide and its catalytic activity in the allylic chlorination of natural terpenes. New J Chem 40:3395–3399CrossRefGoogle Scholar
  84. 84.
    Denmark SE, Collins WR (2007) Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization. Org Lett 9:3801–3804PubMedCrossRefGoogle Scholar
  85. 85.
    Denmark SE, Kornfilt DJP, Vogler T (2011) Catalytic asymmetric thiofunctionalization of unactivated alkenes. J Am Chem Soc 133:15308–15311PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Denmark SE, Jaunet A (2013) Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. J Am Chem Soc 135:6419–6422PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Denmark SE, Kornfilt DJP (2017) Catalytic, enantioselective, intramolecular sulfenofunctionalization of alkenes with phenols. J Org Chem 82:3192–3222PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Denmark SE, Chi HM (2014) Lewis base catalyzed, enantioselective, intramolecular sulfenoamination of olefins. J Am Chem Soc 136:8915–8918PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Denmark SE, Chi HM (2017) Catalytic, enantioselective, intramolecular sulfenoamination of alkenes with anilines. J Org Chem 82:3826–3843PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Denmark SE, Chi HM (2014) Catalytic, enantioselective, intramolecular carbosulfenylation of olefins. Mechanistic aspects: a remarkable case of negative catalysis. J Am Chem Soc 136:3655–3663PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Denmark SE, Hartmann E, Kornfilt DJP, Wang H (2014) Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulfenofunctionalization of alkenes. Nat Chem 6:1056–1064PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Denmark SE, Rossi S, Webster MP, Wang H (2014) Catalytic, enantioselective sulfenylation of ketone-derived enoxysilanes. J Am Chem Soc 136:13016–13028PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Chen F, Tan CK, Yeung YY (2013) C2-Symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J Am Chem Soc 135:1232–1235PubMedCrossRefGoogle Scholar
  94. 94.
    Luo J, Liu Y, Zhao X (2017) Chiral selenide-catalyzed enantioselective construction of saturated trifluoromethylthiolated azaheterocycles. Org Lett 19:3434–3437PubMedCrossRefGoogle Scholar
  95. 95.
    Goti A, Cardona F (2008) Hydrogen peroxide in green oxidation reactions: recent catalytic processes. In: Tundo P, Esposito V (eds) Green chemical reactions, NATO science for peace and security series (Series C: Environmental security). Springer, Dordrecht, pp 191–212CrossRefGoogle Scholar
  96. 96.
    Venturello C, Gambaro M (1991) Selective oxidation of alcohols and aldehydes with hydrogen peroxide catalyzed by methyltrioctylammonium tetrakis(oxodiperoxotungsto)-phosphate(3-) under two-phase conditions. J Org Chem 56:5924–5931CrossRefGoogle Scholar
  97. 97.
    Che CM, Yip WP, Yu WY (2006) Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide. Chem Asian J 1:453–458PubMedCrossRefGoogle Scholar
  98. 98.
    Gopinath R, Patel BK (2000) A catalytic oxidative esterification of aldehydes using V2O5−H2O2. Org Lett 2:577–579PubMedCrossRefGoogle Scholar
  99. 99.
    Trost BM, Masuyama Y (1984) Chemoselectivity in molybdenum catalyzed alcohol and aldehyde oxidations. Tetrahedron Lett 25:173–176CrossRefGoogle Scholar
  100. 100.
    Giurg M, Młochowski J, Ambrożak A (2002) Hydrogen peroxide oxidation of N,N-dimethylhydrazone promoted by selenium compounds, titanosilicalites or acetonitrile. Pol J Chem 76:1713–1720Google Scholar
  101. 101.
    Dodd RH, Le Hyaric M (1993) The oxidation of aromatic aldehydes to carboxylic acids using hydrogen peroxide in formic acid. Synthesis 1993:295–297CrossRefGoogle Scholar
  102. 102.
    Dalcanale E, Montanari F (1986) Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide. J Org Chem 51:567–569CrossRefGoogle Scholar
  103. 103.
    Sharpless KB, Lauer RF, Teranishi AY (1973) Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds. J Am Chem Soc 95:6137–6139CrossRefGoogle Scholar
  104. 104.
    Sancineto L, Tidei C, Bagnoli L, Marini F, Lenardão EJ, Santi C (2015) Selenium catalyzed oxidation of aldehydes: green synthesis of carboxylic acids and esters. Molecules 20:10496–10510PubMedCrossRefGoogle Scholar
  105. 105.
    Taylor RT, Flood LA (1983) Polystyrene-bound phenylseleninic acid: catalytic oxidations of olefins, ketones, and aromatics. J Org Chem 48:5160–5164CrossRefGoogle Scholar
  106. 106.
    Wójtowicz H, Soroko G, Młochowski J (2008) New recoverable organoselenium catalyst for hydroperoxide oxidation of organic substrates. Synth Commun 38:2000–2010CrossRefGoogle Scholar
  107. 107.
    Rangraz Y, Nemati F, Elhampour A (2018) Diphenyl diselenide immobilized on magnetic nanoparticles: a novel and retrievable heterogeneous catalyst in the oxidation of aldehydes under mild and green conditions. J Colloid Interface Sci 509:485–494PubMedCrossRefGoogle Scholar
  108. 108.
    Wang T, Jing X, Chen C, Yu L (2017) Organoselenium-catalyzed oxidative C=C bond cleavage: a relatively green oxidation of alkenes into carbonyl compounds with hydrogen peroxide. J Org Chem 82:9342–9349PubMedCrossRefGoogle Scholar
  109. 109.
    Syper L (1989) The Baeyer-Villiger oxidation of aromatic aldehydes and ketones with hydrogen peroxide catalyzed by selenium compounds. A convenient method for the preparation of phenols. Synthesis 1989:167–172CrossRefGoogle Scholar
  110. 110.
    Yu L, Ye J, Zhang X, Dinga Y, Xu Q (2015) Recyclable (PhSe)2-catalyzed selective oxidation of isatin by H2O2: a practical and waste-free access to isatoic anhydride under mild and neutral conditions. Cat Sci Technol 5:4830–4838CrossRefGoogle Scholar
  111. 111.
    Zhang X, Ye J, Yu L, Shi X, Zhang M, Xu Q, Lautens M (2015) Organoselenium-catalyzed Baeyer-Villiger oxidation of α,β-unsaturated ketones by hydrogen peroxide to access vinyl esters. Adv Synth Catal 357:955–960CrossRefGoogle Scholar
  112. 112.
    Reich HJ, Chow F, Peake SL (1978) Seleninic acids as catalysts of olefins and sulfides using hydrogen peroxide. Synthesis 1978:299–301CrossRefGoogle Scholar
  113. 113.
    Grieco PA, Yokoyama Y, Gilman S, Nishizawa M (1977) Organoselenium chemistry. Epoxidation of olefins with benzeneseleninic acid and hydrogen peroxide (“benzeneperoxyseleninic acid”). J Org Chem 42:2034–2036CrossRefGoogle Scholar
  114. 114.
    Kametani T, Nemoto H, Fukumoto K (1977) A new method for an epoxidation of olefins and its application to a biomimetic type synthesis of monoterpenes, linalyloxides. Heterocycles 6:1365–1370CrossRefGoogle Scholar
  115. 115.
    Hori T, Sharpless KB (1978) Synthetic applications of arylselenenic and arylseleninic acids. Conversion of olefins to allylic alcohols and epoxides. J Org Chem 43:1689–1697CrossRefGoogle Scholar
  116. 116.
    ten Brink GJ, Fernandes BCM, van Vliet MCA, Arends IWCE, Sheldon RA (2001) Selenium catalysed oxidations with aqueous hydrogen peroxide. Part I: Epoxidation reactions in homogeneous solution. J Chem Soc Perkin Trans 2001:224–228CrossRefGoogle Scholar
  117. 117.
    Yu L, Bai Z, Zhang X, Zhang X, Ding Y, Xu Q (2016) Organoselenium-catalyzed selectivity-switchable oxidation of β-ionone. Cat Sci Technol 6:1804–1809CrossRefGoogle Scholar
  118. 118.
    García-Marín H, van der Toorn JC, Mayoral JA, García JI, Arends IWCE (2009) Glycerol-based solvents as green reaction media in epoxidations with hydrogen peroxide catalysed by bis[3,5-bis(trifluoromethyl)-diphenyl] diselenide. Green Chem 11:1605–1609CrossRefGoogle Scholar
  119. 119.
    Sancineto L, Mangiavacchi F, Tidei C, Bagnoli L, Marini F, Gioiello A, Scianowski J, Santi C (2017) Selenium-catalyzed oxacyclization of alkenoic acids and alkenols. Asian J Org Chem 6:988–992CrossRefGoogle Scholar
  120. 120.
    Cerra B, Mangiavacchi F, Santi C, Lozza AM, Gioiello A (2017) Selective continuous flow synthesis of hydroxy lactones from alkenoic acids. React Chem Eng 2:467–471CrossRefGoogle Scholar
  121. 121.
    Francavilla C, Bright FV, Detty MR (1999) Dendrimeric catalysts for the activation of hydrogen peroxide. Increasing activity per catalytic phenylseleno group in successive generations. Org Lett 1:1043–1046CrossRefGoogle Scholar
  122. 122.
    Francavilla C, Drake MD, Bright FV, Detty MR (2001) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: improved catalytic activity through statistical effects and cooperativity in successive generations. J Am Chem Soc 123:57–67PubMedCrossRefGoogle Scholar
  123. 123.
    Drake MD, Bright FV, Detty MR (2003) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: origins of the “dendrimer effect” with catalysts terminating in phenylseleno groups. J Am Chem Soc 125:12558–12566PubMedCrossRefGoogle Scholar
  124. 124.
    Newkome GR, Moorefield C, Vögtle F (2001) Dendritic macromolecules: concepts, synthesis, perspectives. Wiley-VCH, WeinheimGoogle Scholar
  125. 125.
    Drake MD, Bateman MA, Detty MR (2003) Substituent effects in arylseleninic acid-catalyzed bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics 22:4158–4162CrossRefGoogle Scholar
  126. 126.
    Bennett SM, Tang Y, McMaster D, Bright FV, Detty MR (2008) A xerogel-sequestered selenoxide catalyst for brominations with hydrogen peroxide and sodium bromide in an aqueous environment. J Org Chem 73:6849–6852PubMedCrossRefGoogle Scholar
  127. 127.
    Gatley CM, Muller LM, Lang MA, Alberto EE, Detty MR (2015) Xerogel-sequestered silanated organochalcogenide catalysts for bromination with hydrogen peroxide and sodium bromide. Molecules 20:9616–9639PubMedCrossRefGoogle Scholar
  128. 128.
    Alberto EE, Braga AL, Detty MR (2012) Imidazolium-containing diselenides for catalytic oxidations with hydrogen peroxide and sodium bromide in aqueous solutions. Tetrahedron 68:10476–10481CrossRefGoogle Scholar
  129. 129.
    Ribaudo G, Bellanda M, Menegazzo I, Wolters LP, Bortoli M, Ferrer-Sueta G, Zagotto G, Orian L (2017) Mechanistic insight into the oxidation of organic phenylselenides by H2O2. Chem Eur J 23:2405–2422PubMedCrossRefGoogle Scholar
  130. 130.
    Crich D, Sannigrahi M (2002) Rapid assembly of tetrahydrodibenzofurans and tetrahydrocarbazoles from benzene and o-iodophenols and o-iodoanilines: reductive radical arylation of benzene in action. Tetrahedron 58:3319–3322CrossRefGoogle Scholar
  131. 131.
    Crich D, Rumthao S (2004) Synthesis of carbazomycin B by radical arylation of benzene. Tetrahedron 60:1513–1516CrossRefGoogle Scholar
  132. 132.
    Crich D, Grant D (2005) Synthesis of a 4,6-disubstituted dibenzofuran β-sheet initiator by reductive radical arylation of benzene. J Org Chem 70:2384–2386PubMedCrossRefGoogle Scholar
  133. 133.
    Crich D, Patel M (2005) Facile dearomatizing radical arylation of furan and thiophene. Org Lett 7:3625–3628PubMedCrossRefGoogle Scholar
  134. 134.
    Clive DLJ, Pham MP, Subedi R (2007) Carbocyclization by radical closure onto O-trityl oximes: dramatic effect of diphenyl diselenide. J Am Chem Soc 129:2713–2717PubMedCrossRefGoogle Scholar
  135. 135.
    Zhang X, Sun J, Ding Y, Yu L (2015) Dehydration of aldoximes using PhSe(O)OH as the pre-catalyst in air. Org Lett 17:5840–5842PubMedCrossRefGoogle Scholar
  136. 136.
    Said SB, Skarzevski J, Młochowski J (1989) Conversion of aldehydes into nitriles via oxidation of their dimethylhydrazones. Synthesis 1989:223–224CrossRefGoogle Scholar
  137. 137.
    Akondi SM, Gangireddy P, Pickel TC, Liebeskind LS (2018) Aerobic, diselenide catalyzed redox dehydration: amides and peptides. Org Lett 20:538–541PubMedCrossRefGoogle Scholar
  138. 138.
    Curran SP, Connon SJ (2012) Selenide ions as catalysts for homo- and crossed-Tishchenko reactions of expanded scope. Org Lett 14:1074–1077PubMedCrossRefGoogle Scholar
  139. 139.
    Betzemeier B, Lhermitte F, Knochel P (1999) A selenium catalyzed epoxidation in perfluorinated solvents with hydrogen peroxide. Synlett 1999:489–491CrossRefGoogle Scholar
  140. 140.
    ten Brink GJ, Vis JM, Arends IWCE, Sheldon RA (2002) Selenium catalyzed oxidations with aqueous hydrogen peroxide. Part 3: Oxidation of carbonyl compounds under mono/bi/triphasic conditions. Tetrahedron 58:3977–3983CrossRefGoogle Scholar
  141. 141.
    Horvárth IT, Rábai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75CrossRefGoogle Scholar
  142. 142.
    Kim HS, Kim YJ, Lee H, Park KY, Lee C, Chin CS (2002) Ionic liquids containing anionic selenium species: applications for the oxidative carbonylation of aniline. Angew Chem Int Ed 41:4300–4303CrossRefGoogle Scholar
  143. 143.
    Fukuoka S, Chono M, Kohno M (1984) A novel catalytic synthesis of carbamates by oxydative alkoxycarbonylation of amines in the presence of palladium and iodide. J Chem Soc Chem Commun 1984:399–400CrossRefGoogle Scholar
  144. 144.
    Tian F, Chen Y, Wang X, Li P, Lu S (2015) Oxidative carbonylation of aromatic amines with CO catalyzed by 1,3-dialkylimidazole-2-selenone in ionic liquids. J Chem.  https://doi.org/10.1155/2015/210806

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eder João Lenardão
    • 1
  • Claudio Santi
    • 2
  • Luca Sancineto
    • 3
  1. 1.CCQFA - LASOLUniversidade Federal de PelotasPelotasBrazil
  2. 2.Department of Pharmaceutical SciencesUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Section of Heterorganic ChemistryCentre of Molecular and Macromolecular Studies, Polish Academy of SciencesŁódźPoland

Personalised recommendations