Advertisement

Genetically Engineered Large Animals in Biomedicine

  • Eckhard Wolf
  • Alexander Kind
  • Bernhard Aigner
  • Angelika Schnieke
Chapter

Abstract

Major progress in genetic engineering and genome editing of livestock species has extended their use to biomedical applications, the most notable being tailored large animal models for translational medicine; porcine cells, tissues and organs for xenotransplantation; and production of pharmaceutical proteins in transgenic large animals. The translation of novel discoveries from basic research to clinical application is a long, often inefficient and costly process. Appropriate animal models are critical for the success of translational research. Although rodent models are widely used, they often do not accurately represent the human disease. Thus, additional animal models that more closely mimic aspects of human anatomy and physiology are required. Several genetically engineered pig models have been generated, many of which represent human disease mechanisms and phenotypes more closely than existing rodent models. In addition, genetically modified small ruminants and rabbits are interesting models for specific disease entities. Pigs are the most promising donor species for xenotransplantation. Since multiple genetic modifications are required to prevent immune rejection, to overcome physiological incompatibilities of xeno-organs and to eliminate potential risk factors such as porcine endogenous retroviruses (PERV), genome editing is speeding progress in this field. Last but not least, genetic engineering of large animal species as bioreactors for the production of pharmaceutical proteins is still an interesting option, though only a few such products are on the market. In summary, genetically engineered large animals are playing an increasingly important role in biomedicine. In particular, genetically tailored large animal models may help to bridge the gap between proof-of-concept studies in rodent models and clinical trials in human patients.

Keywords

Translational medicine Large animal model Xenotransplantation Gene farming 

Notes

Acknowledgements

Our studies on the development of large animal models are supported by the German Research Council, the Federal Ministry for Education and Research, the Mildred Scheel Foundation of German Cancer Aid, the Bavarian Research Council and the Mukoviszidose Institut gemeinnützige Gesellschaft für Forschung und Therapieentwicklung mbH. The authors are members of EU COST Action BM1308.

References

  1. Abbott A (2015) Inside the first pig biobank. Nature 519(7544):397–398.  https://doi.org/10.1038/519397a CrossRefPubMedGoogle Scholar
  2. Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM (2007) Genetic induction of tumorigenesis in swine. Oncogene 26(7):1038–1045.  https://doi.org/10.1038/sj.onc.1209892 CrossRefPubMedGoogle Scholar
  3. Agarwala A, Billheimer J, Rader DJ (2013) Mighty minipig in fight against cardiovascular disease. Sci Transl Med 5(166):166fs161.  https://doi.org/10.1126/scitranslmed.3005369 CrossRefGoogle Scholar
  4. Ahrens HE, Petersen B, Herrmann D, Lucas-Hahn A, Hassel P, Ziegler M, Kues WA, Baulain U, Baars W, Schwinzer R, Denner J, Rataj D, Werwitzke S, Tiede A, Bongoni AK, Garimella PS, Despont A, Rieben R, Niemann H (2015) siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation. Am J Transplant 15(5):1407–1414.  https://doi.org/10.1111/ajt.13120 CrossRefPubMedGoogle Scholar
  5. Aigner B, Rathkolb B, Herbach N, Hrabe de Angelis M, Wanke R, Wolf E (2008) Diabetes models by screen for hyperglycemia in phenotype-driven ENU mouse mutagenesis projects. Am J Physiol Endocrinol Metab 294(2):E232–E240.  https://doi.org/10.1152/ajpendo.00592.2007 CrossRefPubMedGoogle Scholar
  6. Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E (2010) Transgenic pigs as models for translational biomedical research. J Mol Med 88(7):653–664.  https://doi.org/10.1007/s00109-010-0610-9 CrossRefPubMedGoogle Scholar
  7. Aikin RA (2012) How to kill two birds with one transgenic pig. Diabetes 61(6):1348–1349.  https://doi.org/10.2337/db12-0201 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alberg AJ, Lam AP, Helzlsouer KJ (1999) Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol 11(6):435–441CrossRefPubMedGoogle Scholar
  9. Albl B, Haesner S, Braun-Reichhart C, Streckel E, Renner S, Seeliger F, Wolf E, Wanke R, Blutke A (2016) Tissue sampling guides for porcine biomedical models. Toxicol Pathol 44(3):414–420.  https://doi.org/10.1177/0192623316631023 CrossRefPubMedGoogle Scholar
  10. Al-Mashhadi RH, Sorensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci ransl Med 5(166):166ra161.  https://doi.org/10.1126/scitranslmed.3004853 CrossRefGoogle Scholar
  11. Al-Mashhadi RH, Bjorklund MM, Mortensen MB, Christoffersen C, Larsen T, Falk E, Bentzon JF (2015) Diabetes with poor glycaemic control does not promote atherosclerosis in genetically modified hypercholesterolaemic minipigs. Diabetologia 58(8):1926–1936.  https://doi.org/10.1007/s00125-015-3637-1 CrossRefPubMedGoogle Scholar
  12. Alton EW, Armstrong DK, Ashby D, Bayfield KJ, Bilton D, Bloomfield EV, Boyd AC, Brand J, Buchan R, Calcedo R, Carvelli P, Chan M, Cheng SH, Collie DD, Cunningham S, Davidson HE, Davies G, Davies JC, Davies LA, Dewar MH, Doherty A, Donovan J, Dwyer NS, Elgmati HI, Featherstone RF, Gavino J, Gea-Sorli S, Geddes DM, Gibson JS, Gill DR, Greening AP, Griesenbach U, Hansell DM, Harman K, Higgins TE, Hodges SL, Hyde SC, Hyndman L, Innes JA, Jacob J, Jones N, Keogh BF, Limberis MP, Lloyd-Evans P, Maclean AW, Manvell MC, McCormick D, McGovern M, McLachlan G, Meng C, Montero MA, Milligan H, Moyce LJ, Murray GD, Nicholson AG, Osadolor T, Parra-Leiton J, Porteous DJ, Pringle IA, Punch EK, Pytel KM, Quittner AL, Rivellini G, Saunders CJ, Scheule RK, Sheard S, Simmonds NJ, Smith K, Smith SN, Soussi N, Soussi S, Spearing EJ, Stevenson BJ, Sumner-Jones SG, Turkkila M, Ureta RP, Waller MD, Wasowicz MY, Wilson JM, Wolstenholme-Hogg P, Consortium UKCFGT (2015) Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 3:684.  https://doi.org/10.1016/S2213-2600(15)00245-3 CrossRefPubMedPubMedCentralGoogle Scholar
  13. American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74.  https://doi.org/10.2337/dc13-S067 CrossRefGoogle Scholar
  14. Anderson LJ, Jarrett WF (1968) Lymphosarcoma (leukemia) in cattle, sheep and pigs in Great Britain. Cancer 22(2):398–405CrossRefPubMedGoogle Scholar
  15. Araki E, Nakamura K, Nakao K, Kameya S, Kobayashi O, Nonaka I, Kobayashi T, Katsuki M (1997) Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle Degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 238(2):492–497CrossRefPubMedGoogle Scholar
  16. Aron Badin R, Vadori M, Vanhove B, Nerriere-Daguin V, Naveilhan P, Neveu I, Jan C, Leveque X, Venturi E, Mermillod P, Van Camp N, Dolle F, Guillermier M, Denaro L, Manara R, Citton V, Simioni P, Zampieri P, D’Avella D, Rubello D, Fante F, Boldrin M, De Benedictis GM, Cavicchioli L, Sgarabotto D, Plebani M, Stefani AL, Brachet P, Blancho G, Soulillou JP, Hantraye P, Cozzi E (2016) Cell therapy for Parkinson’s disease: a translational approach to assess the role of local and systemic immunosuppression. Am J Transplant 16:2016.  https://doi.org/10.1111/ajt.13704 CrossRefPubMedGoogle Scholar
  17. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157.  https://doi.org/10.1053/j.gastro.2007.03.054 CrossRefPubMedGoogle Scholar
  18. Bähr A, Wolf E (2012) Domestic animal models for biomedical research. Reprod Domest Anim 47(Suppl 4):59–71.  https://doi.org/10.1111/j.1439-0531.2012.02056.x CrossRefPubMedGoogle Scholar
  19. Bartlett ST, Markmann JF, Johnson P, Korsgren O, Hering BJ, Scharp D, Kay TW, Bromberg J, Odorico JS, Weir GC, Bridges N, Kandaswamy R, Stock P, Friend P, Gotoh M, Cooper DK, Park CG, O’Connell P, Stabler C, Matsumoto S, Ludwig B, Choudhary P, Kovatchev B, Rickels MR, Sykes M, Wood K, Kraemer K, Hwa A, Stanley E, Ricordi C, Zimmerman M, Greenstein J, Montanya E, Otonkoski T (2016) Report from IPITA-TTS opinion leaders meeting on the future of beta-cell replacement. Transplantation 100(Suppl 2):S1–S44.  https://doi.org/10.1097/tp.0000000000001055 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Berthelsen MF, Callesen MM, Ostergaard TS, Liu Y, Li R, Callesen H, Dagnaes-Hansen F, Hamilton-Dutoit S, Jakobsen JE, Thomsen MK (2017) Pancreas specific expression of oncogenes in a porcine model. Transgenic Res 26(5):603–612.  https://doi.org/10.1007/s11248-017-0031-4 CrossRefPubMedGoogle Scholar
  21. Blutke A, Renner S, Flenkenthaler F, Backman M, Haesner S, Kemter E, Landstrom E, Braun-Reichhart C, Albl B, Streckel E, Rathkolb B, Prehn C, Palladini A, Grzybek M, Krebs S, Bauersachs S, Bahr A, Bruhschwein A, Deeg CA, De Monte E, Dmochewitz M, Eberle C, Emrich D, Fux R, Groth F, Gumbert S, Heitmann A, Hinrichs A, Kessler B, Kurome M, Leipig-Rudolph M, Matiasek K, Ozturk H, Otzdorff C, Reichenbach M, Reichenbach HD, Rieger A, Rieseberg B, Rosati M, Saucedo MN, Schleicher A, Schneider MR, Simmet K, Steinmetz J, Ubel N, Zehetmaier P, Jung A, Adamski J, Coskun U, Hrabe de Angelis M, Simmet C, Ritzmann M, Meyer-Lindenberg A, Blum H, Arnold GJ, Frohlich T, Wanke R, Wolf E (2017) The Munich MIDY Pig Biobank - a unique resource for studying organ crosstalk in diabetes. Mol Metabol 6(8):931–940.  https://doi.org/10.1016/j.molmet.2017.06.004 CrossRefGoogle Scholar
  22. Bogaert J, Prenen H (2014) Molecular genetics of colorectal cancer. Ann Gastroenterol 27(1):9–14PubMedPubMedCentralGoogle Scholar
  23. Bottino R, Wijkstrom M, van der Windt DJ, Hara H, Ezzelarab M, Murase N, Bertera S, He J, Phelps C, Ayares D, Cooper DK, Trucco M (2014) Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant 14(10):2275–2287.  https://doi.org/10.1111/ajt.12868 CrossRefPubMedPubMedCentralGoogle Scholar
  24. van Boxtel R, Kuiper RV, Toonen PW, van Heesch S, Hermsen R, de Bruin A, Cuppen E (2011) Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am J Pathol 179(4):1616–1622.  https://doi.org/10.1016/j.ajpath.2011.06.036 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bulato C, Radu C, Simioni P (2012) Studies on coagulation incompatibilities for xenotransplantation. Methods Mol Biol 885:71–89.  https://doi.org/10.1007/978-1-61779-845-0_6 CrossRefPubMedGoogle Scholar
  26. Burlak C, Paris LL, Lutz AJ, Sidner RA, Estrada J, Li P, Tector M, Tector AJ (2014) Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs. Am J Transplant 14(8):1895–1900.  https://doi.org/10.1111/ajt.12744 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Byrne GW, McGregor CG, Breimer ME (2015) Recent investigations into pig antigen and anti-pig antibody expression. Int J Surg 23(Pt B):223–228.  https://doi.org/10.1016/j.ijsu.2015.07.724 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Callejas D, Mann CJ, Ayuso E, Lage R, Grifoll I, Roca C, Andaluz A, Ruiz-de Gopegui R, Montane J, Munoz S, Ferre T, Haurigot V, Zhou S, Ruberte J, Mingozzi F, High KA, Garcia F, Bosch F (2013) Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes 62(5):1718–1729.  https://doi.org/10.2337/db12-1113 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Callesen MM, Arnadottir SS, Lyskjaer I, Orntoft MW, Hoyer S, Dagnaes-Hansen F, Liu Y, Li R, Callesen H, Rasmussen MH, Berthelsen MF, Thomsen MK, Schweiger PJ, Jensen KB, Laurberg S, Orntoft TF, Elverlov-Jakobsen JE, Andersen CL (2017) A genetically inducible porcine model of intestinal cancer. Mol Oncol 11(11):1616–1629.  https://doi.org/10.1002/1878-0261.12136 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cao H, Machuca TN, Yeung JC, Wu J, Du K, Duan C, Hashimoto K, Linacre V, Coates AL, Leung K, Wang J, Yeger H, Cutz E, Liu M, Keshavjee S, Hu J (2013) Efficient gene delivery to pig airway epithelia and submucosal glands using helper-dependent adenoviral vectors. Mol Ther Nucleic Acids 2:e127.  https://doi.org/10.1038/mtna.2013.55 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, Zabner J, Welsh MJ (2010) Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 143(6):911–923.  https://doi.org/10.1016/j.cell.2010.11.029 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chen Y, Zheng Y, Kang Y, Yang W, Niu Y, Guo X, Tu Z, Si C, Wang H, Xing R, Pu X, Yang SH, Li S, Ji W, Li XJ (2015) Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet 24(13):3764–3774.  https://doi.org/10.1093/hmg/ddv120 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Clark AJ (1998) The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins. J Mammary Gland Biol Neoplasia 3(3):337–350CrossRefPubMedGoogle Scholar
  34. Clark AJ, Simons P, Wilmut I, Lathe R (1987) Pharmaceuticals from transgenic livestock. Trends Biotechnol 5:20–24CrossRefGoogle Scholar
  35. Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016) The role of genetically engineered pigs in xenotransplantation research. J Pathol 238(2):288–299.  https://doi.org/10.1002/path.4635 CrossRefPubMedGoogle Scholar
  36. Cowan PJ, Robson SC (2015) Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg 23(Pt B):296–300.  https://doi.org/10.1016/j.ijsu.2015.07.682 CrossRefPubMedGoogle Scholar
  37. Croner RS, Brueckl WM, Reingruber B, Hohenberger W, Guenther K (2005) Age and manifestation related symptoms in familial adenomatous polyposis. BMC Cancer 5:24.  https://doi.org/10.1186/1471-2407-5-24 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Cutting GR (2015) Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet 16(1):45–56.  https://doi.org/10.1038/nrg3849 CrossRefPubMedGoogle Scholar
  39. Davies K (2013) The era of genomic medicine. Clin Med 13(6):594–601.  https://doi.org/10.7861/clinmedicine.13-6-594 CrossRefGoogle Scholar
  40. Davis BT, Wang XJ, Rohret JA, Struzynski JT, Merricks EP, Bellinger DA, Rohret FA, Nichols TC, Rogers CS (2014) Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs. PLoS One 9(4):e93457.  https://doi.org/10.1371/journal.pone.0093457 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dawson JR, Vidal AC, Malyguine AM (2000) Natural killer cell-endothelial cell interactions in xenotransplantation. Immunol Res 22(2-3):165–176.  https://doi.org/10.1385/ir:22:2-3:165 CrossRefPubMedGoogle Scholar
  42. Dell’agnello C, Leo S, Agostino A, Szabadkai G, Tiveron C, Zulian A, Prelle A, Roubertoux P, Rizzuto R, Zeviani M (2007) Increased longevity and refractoriness to Ca(2+)-dependent neurodegeneration in Surf1 knockout mice. Hum Mol Genet 16(4):431–444.  https://doi.org/10.1093/hmg/ddl477 CrossRefPubMedGoogle Scholar
  43. Deng S, Yu K, Zhang B, Yao Y, Liu Y, He H, Zhang H, Cui M, Fu J, Lian Z, Li N (2012) Effects of over-expression of TLR2 in transgenic goats on pathogen clearance and role of up-regulation of lysozyme secretion and infiltration of inflammatory cells. BMC Vet Res 8:196.  https://doi.org/10.1186/1746-6148-8-196 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Denner J (2013) Immunising with the transmembrane envelope proteins of different retroviruses including HIV-1: a comparative study. Hum Vaccin Immunother 9(3):462–470CrossRefPubMedGoogle Scholar
  45. Denner J (2017a) Advances in organ transplant from pigs. Science 357(6357):1238–1239.  https://doi.org/10.1126/science.aao6334 CrossRefPubMedGoogle Scholar
  46. Denner J (2017b) Paving the path toward porcine organs for transplantation. N Engl J Med 377(19):1891–1893.  https://doi.org/10.1056/NEJMcibr1710853 CrossRefPubMedGoogle Scholar
  47. Denner J, Tonjes RR (2012) Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 25(2):318–343.  https://doi.org/10.1128/CMR.05011-11 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J (2008) Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 15(1):36–45.  https://doi.org/10.1111/j.1399-3089.2008.00442.x CrossRefPubMedGoogle Scholar
  49. Dine J, Deng CX (2013) Mouse models of BRCA1 and their application to breast cancer research. Cancer Metastasis Rev 32(1-2):25–37.  https://doi.org/10.1007/s10555-012-9403-7 CrossRefPubMedGoogle Scholar
  50. Dufrane D, van Steenberghe M, Guiot Y, Goebbels RM, Saliez A, Gianello P (2006) Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and beta-cell plasticity. Transplantation 81(1):36–45CrossRefPubMedGoogle Scholar
  51. Duranthon V, Beaujean N, Brunner M, Odening KE, Santos AN, Kacskovics I, Hiripi L, Weinstein EJ, Bosze Z (2012) On the emerging role of rabbit as human disease model and the instrumental role of novel transgenic tools. Transgenic Res 21(4):699–713.  https://doi.org/10.1007/s11248-012-9599-x CrossRefPubMedGoogle Scholar
  52. Dyck MK, Lacroix D, Pothier F, Sirard MA (2003) Making recombinant proteins in animals--different systems, different applications. Trends Biotechnol 21(9):394–399.  https://doi.org/10.1016/s0167-7799(03)00190-2 CrossRefPubMedGoogle Scholar
  53. Ehrnhoefer DE, Butland SL, Pouladi MA, Hayden MR (2009) Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2(3-4):123–129.  https://doi.org/10.1242/dmm.002451 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ekser B, Cooper DK, Tector AJ (2015) The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg 23:199.  https://doi.org/10.1016/j.ijsu.2015.06.066 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Escareno CE, Azagury DE, Flint RS, Nedder A, Thompson CC, Lautz DB (2012) Establishing a reproducible large animal survival model of laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis 8(6):764–769.  https://doi.org/10.1016/j.soard.2011.05.021 CrossRefPubMedGoogle Scholar
  56. Estrada JL, Martens G, Li P, Adams A, Newell KA, Ford ML, Butler JR, Sidner R, Tector M, Tector J (2015) Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22(3):194–202.  https://doi.org/10.1111/xen.12161 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Fairclough RJ, Wood MJ, Davies KE (2013) Therapy for Duchenne muscular dystrophy: renewed optimism from genetic approaches. Nat Rev Genet 14(6):373–378.  https://doi.org/10.1038/nrg3460 CrossRefPubMedGoogle Scholar
  58. Fan N, Lai L (2013) Genetically modified pig models for human diseases. J Genet Genom 40(2):67–73.  https://doi.org/10.1016/j.jgg.2012.07.014 CrossRefGoogle Scholar
  59. Fanen P, Wohlhuter-Haddad A, Hinzpeter A (2014) Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol 52:94.  https://doi.org/10.1016/j.biocel.2014.02.023 CrossRefPubMedGoogle Scholar
  60. Farrell T, Neale L, Cundy T (2002) Congenital anomalies in the offspring of women with type 1, type 2 and gestational diabetes. Diabet Med 19(4):322–326CrossRefPubMedGoogle Scholar
  61. Fischer K, Kraner-Scheiber S, Petersen B, Rieblinger B, Buermann A, Flisikowska T, Flisikowski K, Christan S, Edlinger M, Baars W, Kurome M, Zakhartchenko V, Kessler B, Plotzki E, Szczerbal I, Switonski M, Denner J, Wolf E, Schwinzer R, Niemann H, Kind A, Schnieke A (2016) Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep 6:29081.  https://doi.org/10.1038/srep29081 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Fisher LF, Olander HJ (1978) Spontaneous neoplasms of pigs - a study of 31 cases. J Comp Pathol 88(4):505–517CrossRefPubMedGoogle Scholar
  63. Fishman JA (2014) Assessment of infectious risk in clinical xenotransplantation: the lessons for clinical allotransplantation. Xenotransplantation 21(4):307–308.  https://doi.org/10.1111/xen.12118 CrossRefPubMedGoogle Scholar
  64. Fishman JA, Scobie L, Takeuchi Y (2012) Xenotransplantation-associated infectious risk: a WHO consultation. Xenotransplantation 19(2):72–81.  https://doi.org/10.1111/j.1399-3089.2012.00693.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Flisikowska T, Merkl C, Landmann M, Eser S, Rezaei N, Cui X, Kurome M, Zakhartchenko V, Kessler B, Wieland H, Rottmann O, Schmid RM, Schneider G, Kind A, Wolf E, Saur D, Schnieke A (2012) A porcine model of familial adenomatous polyposis. Gastroenterology 143(5):1173–1175.e1171-1177.  https://doi.org/10.1053/j.gastro.2012.07.110 CrossRefPubMedGoogle Scholar
  66. Flisikowska T, Kind A, Schnieke A (2013) The new pig on the block: modelling cancer in pigs. Transgenic Res 22(4):673–680.  https://doi.org/10.1007/s11248-013-9720-9 CrossRefPubMedGoogle Scholar
  67. Flisikowska T, Kind A, Schnieke A (2014) Genetically modified pigs to model human diseases. J Appl Genet 55(1):53–64.  https://doi.org/10.1007/s13353-013-0182-9 CrossRefPubMedGoogle Scholar
  68. Flisikowska T, Stachowiak M, Xu H, Wagner A, Hernandez-Caceres A, Wurmser C, Perleberg C, Pausch H, Perkowska A, Fischer K, Frishman D, Fries R, Switonski M, Kind A, Saur D, Schnieke A, Flisikowski K (2017) Porcine familial adenomatous polyposis model enables systematic analysis of early events in adenoma progression. Sci Rep 7(1):6613.  https://doi.org/10.1038/s41598-017-06741-8 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Flisikowski K, Flisikowska T, Sikorska A, Perkowska A, Kind A, Schnieke A, Switonski M (2017) Germline gene polymorphisms predisposing domestic mammals to carcinogenesis. Vet Comp Oncol 15:289.  https://doi.org/10.1111/vco.12186 CrossRefPubMedGoogle Scholar
  70. Frohlich T, Kemter E, Flenkenthaler F, Klymiuk N, Otte KA, Blutke A, Krause S, Walter MC, Wanke R, Wolf E, Arnold GJ (2016) Progressive muscle proteome changes in a clinically relevant pig model of Duchenne muscular dystrophy. Sci Rep 6:33362.  https://doi.org/10.1038/srep33362 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183.  https://doi.org/10.1038/nrc1299 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Getz GS, Reardon CA (2012) Animal models of atherosclerosis. Arterioscler Thromb Vasc Biol 32(5):1104–1115.  https://doi.org/10.1161/ATVBAHA.111.237693 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A, Dugovic B, Chaussenot R, Ferry A, Voit T, Amthor H, Buhr C, Schurch S, Wood MJ, Davies KE, Vaillend C, Leumann C, Garcia L (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21(3):270–275.  https://doi.org/10.1038/nm.3765 CrossRefPubMedGoogle Scholar
  74. Griesemer A, Yamada K, Sykes M (2014) Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 258(1):241–258.  https://doi.org/10.1111/imr.12152 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Griesenbach U, Alton EW (2009) Cystic fibrosis gene therapy: successes, failures and hopes for the future. Expert Rev Respir Med 3(4):363–371.  https://doi.org/10.1586/ers.09.25 CrossRefPubMedGoogle Scholar
  76. Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen YH, McCray PB Jr, Davidson BL, Divekar A, Uc A (2014) A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 21(2):123–130.  https://doi.org/10.1038/gt.2013.62 CrossRefPubMedGoogle Scholar
  77. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H, Joslyn G, Stevens J, Spirio L, Robertson M et al (1991) Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66(3):589–600CrossRefPubMedGoogle Scholar
  78. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, Rogel-Gaillard C, Park C, Milan D, Megens HJ, Li S, Larkin DM, Kim H, Frantz LA, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi SH, Chow W, Clark RC, Clee C, Crooijmans RP, Dawson HD, Dehais P, De Sapio F, Dibbits B, Drou N, Du ZQ, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner GJ, Fowler KE, Fredholm M, Fritz E, Gilbert JG, Giuffra E, Gorodkin J, Griffin DK, Harrow JL, Hayward A, Howe K, Hu ZL, Humphray SJ, Hunt T, Hornshoj H, Jeon JT, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim JH, Kim KW, Kim TH, Larson G, Lee K, Lee KT, Leggett R, Lewin HA, Li Y, Liu W, Loveland JE, Lu Y, Lunney JK, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh MP, Narayan J, Nguyen DT, Ni P, Oh SJ, Onteru S, Panitz F, Park EW, Park HS, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy JM, Rodriguez-Zas S, Rohrer GA, Rund L, Sang Y, Schachtschneider K, Schraiber JG, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey BR, Sperber G, Stadler P, Sweedler JV, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook LB (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491(7424):393–398.  https://doi.org/10.1038/nature11622 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Guell M, Niu D, Kan Y, George H, Wang T, Lee IH, Wang G, Church G, Yang L (2017) PERV inactivation is necessary to guarantee absence of pig-to-patient PERVs transmission in xenotransplantation. Xenotransplantation 24(6):e12366.  https://doi.org/10.1111/xen.12366 CrossRefGoogle Scholar
  80. Gui L, Qian H, Rocco KA, Grecu L, Niklason LE (2015) Efficient intratracheal delivery of airway epithelial cells in mice and pigs. Am J Physiol Lung Cell Mol Physiol 308(2):L221–L228.  https://doi.org/10.1152/ajplung.00147.2014 CrossRefPubMedGoogle Scholar
  81. Guijarro MV, Ghivizzani SC, Gibbs CP (2014) Animal models in osteosarcoma. Front Oncol 4:189.  https://doi.org/10.3389/fonc.2014.00189 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Handley RR, Reid SJ, Patassini S, Rudiger SR, Obolonkin V, McLaughlan CJ, Jacobsen JC, Gusella JF, MacDonald ME, Waldvogel HJ, Bawden CS, Faull RL, Snell RG (2016) Metabolic disruption identified in the Huntington’s disease transgenic sheep model. Sci Rep 6:20681.  https://doi.org/10.1038/srep20681 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Hara S, Umeyama K, Yokoo T, Nagashima H, Nagata M (2014) Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans. PLoS One 9(3):e92219.  https://doi.org/10.1371/journal.pone.0092219 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, Cost GJ, Niemann H (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108(29):12013–12017.  https://doi.org/10.1073/pnas.1106422108 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Hermeren G (2015) Ethical considerations in chimera research. Development 142(1):3–5.  https://doi.org/10.1242/dev.119024 CrossRefPubMedGoogle Scholar
  86. Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, Kaczmarek V, Moretti A, Laugwitz KL, Skroblin P, Mayr M, Milting H, Dendorfer A, Reichart B, Wolf E, Kupatt C (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69(2):131–143.  https://doi.org/10.1016/j.jacc.2016.10.058 CrossRefPubMedGoogle Scholar
  87. Hoegger MJ, Awadalla M, Namati E, Itani OA, Fischer AJ, Tucker AJ, Adam RJ, McLennan G, Hoffman EA, Stoltz DA, Welsh MJ (2014a) Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc Natl Acad Sci U S A 111(6):2355–2360.  https://doi.org/10.1073/pnas.1323633111 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, Moninger TO, Michalski AS, Hoffman EA, Zabner J, Stoltz DA, Welsh MJ (2014b) Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345(6198):818–822.  https://doi.org/10.1126/science.1255825 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928 0092-8674(87)90579-4 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  90. Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney-Tait J, Zabner J, Welsh MJ (2011) Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A 108(25):10260–10265.  https://doi.org/10.1073/pnas.1106695108 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ito Y, Azrolan N, O’Connell A, Walsh A, Breslow JL (1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970):790–793CrossRefPubMedGoogle Scholar
  92. Iwase H, Kobayashi T (2015) Current status of pig kidney xenotransplantation. Int J Surg 23(Pt B):229–233.  https://doi.org/10.1016/j.ijsu.2015.07.721 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Iwase H, Ekser B, Hara H, Phelps C, Ayares D, Cooper DK, Ezzelarab MB (2014) Regulation of human platelet aggregation by genetically modified pig endothelial cells and thrombin inhibition. Xenotransplantation 21(1):72–83.  https://doi.org/10.1111/xen.12073 CrossRefPubMedGoogle Scholar
  94. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7CrossRefPubMedGoogle Scholar
  95. Jacobsen JC, Bawden CS, Rudiger SR, McLaughlan CJ, Reid SJ, Waldvogel HJ, MacDonald ME, Gusella JF, Walker SK, Kelly JM, Webb GC, Faull RL, Rees MI, Snell RG (2010) An ovine transgenic Huntington’s disease model. Hum Mol Genet 19(10):1873–1882.  https://doi.org/10.1093/hmg/ddq063 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Ji H, Li X, Yue S, Li J, Chen H, Zhang Z, Ma B, Wang J, Pu M, Zhou L, Feng C, Wang D, Duan J, Pan D, Tao K, Dou K (2015) Pig BMSCs transfected with human TFPI combat species incompatibility and regulate the human TF pathway in vitro and in a rodent model. Cell Physiol Biochem 36(1):233–249.  https://doi.org/10.1159/000374067 CrossRefPubMedGoogle Scholar
  97. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531.  https://doi.org/10.1038/nrm2438 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kemter E, Wolf E (2015) Pigs pave a way to de novo formation of functional human kidneys. Proc Natl Acad Sci U S A 112(42):12905–12906.  https://doi.org/10.1073/pnas.1517582112 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kemter E, Lieke T, Kessler B, Kurome M, Wuensch A, Summerfield A, Ayares D, Nagashima H, Baars W, Schwinzer R, Wolf E (2012) Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses. Xenotransplantation 19(1):40–51.  https://doi.org/10.1111/j.1399-3089.2011.00688.x CrossRefPubMedGoogle Scholar
  100. Kendall SD, Linardic CM, Adam SJ, Counter CM (2005) A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res 65(21):9824–9828.  https://doi.org/10.1158/0008-5472.can-05-1543 CrossRefPubMedGoogle Scholar
  101. Kim MK, Hara H (2015) Current status of corneal xenotransplantation. Int J Surg 23(Pt B):255–260.  https://doi.org/10.1016/j.ijsu.2015.07.685 CrossRefPubMedGoogle Scholar
  102. Kim TY, Kunitomo Y, Pfeiffer Z, Patel D, Hwang J, Harrison K, Patel B, Jeng P, Ziv O, Lu Y, Peng X, Qu Z, Koren G, Choi BR (2015) Complex excitation dynamics underlie polymorphic ventricular tachycardia in a transgenic rabbit model of long QT syndrome type 1. Heart Rhythm 12(1):220–228.  https://doi.org/10.1016/j.hrthm.2014.10.003 CrossRefPubMedGoogle Scholar
  103. Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, Smith KJ, Preisinger AC, Hedge P, McKechnie D et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253(5020):661–665CrossRefPubMedGoogle Scholar
  104. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schurmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Muller TD, Tschop MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140.  https://doi.org/10.1038/nrendo.2017.161 CrossRefPubMedGoogle Scholar
  105. Kleinwort KJH, Amann B, Hauck SM, Hirmer S, Blutke A, Renner S, Uhl PB, Lutterberg K, Sekundo W, Wolf E, Deeg CA (2017) Retinopathy with central oedema in an INS (C94Y) transgenic pig model of long-term diabetes. Diabetologia 60(8):1541–1549.  https://doi.org/10.1007/s00125-017-4290-7 CrossRefPubMedGoogle Scholar
  106. Klose R, Kemter E, Bedke T, Bittmann I, Kelsser B, Endres R, Pfeffer K, Schwinzer R, Wolf E (2005) Expression of biologically active human TRAIL in transgenic pigs. Transplantation 80(2):222–230CrossRefPubMedGoogle Scholar
  107. Klymiuk N, Aigner B, Brem G, Wolf E (2010) Genetic modification of pigs as organ donors for xenotransplantation. Mol Reprod Dev 77(3):209–221.  https://doi.org/10.1002/mrd.21127 CrossRefPubMedGoogle Scholar
  108. Klymiuk N, Mundhenk L, Kraehe K, Wuensch A, Plog S, Emrich D, Langenmayer MC, Stehr M, Holzinger A, Kroner C, Richter A, Kessler B, Kurome M, Eddicks M, Nagashima H, Heinritzi K, Gruber AD, Wolf E (2012a) Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis. J Mol Med 90(5):597–608.  https://doi.org/10.1007/s00109-011-0839-y CrossRefPubMedGoogle Scholar
  109. Klymiuk N, van Buerck L, Bahr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E (2012b) Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 61(6):1527–1532.  https://doi.org/10.2337/db11-1325 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Klymiuk N, Blutke A, Graf A, Krause S, Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome M, Kemter E, Nagashima H, Schoser B, Herbach N, Blum H, Wanke R, Aartsma-Rus A, Thirion C, Lochmuller H, Walter MC, Wolf E (2013) Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 22(21):4368–4382.  https://doi.org/10.1093/hmg/ddt287 CrossRefPubMedGoogle Scholar
  111. Klymiuk N, Ludwig B, Seissler J, Reichart B, Wolf E (2016a) Current concepts of using pigs as a source for beta-cell replacement therapy of type 1 diabetes. Curr Mol Bio Rep 2:73.  https://doi.org/10.1007/s40610-016-0039-1 CrossRefGoogle Scholar
  112. Klymiuk N, Seeliger F, Bohlooly YM, Blutke A, Rudmann DG, Wolf E (2016b) Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol Pathol 44(3):346–357.  https://doi.org/10.1177/0192623315609688 CrossRefPubMedGoogle Scholar
  113. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, Sato H, Lee YS, Usui J, Knisely AS, Hirabayashi M, Nakauchi H (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142(5):787–799.  https://doi.org/10.1016/j.cell.2010.07.039 CrossRefPubMedGoogle Scholar
  114. Kobayashi T, Kato-Itoh M, Nakauchi H (2015) Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation. Stem Cells Dev 24(2):182–189.  https://doi.org/10.1089/scd.2014.0270 CrossRefPubMedGoogle Scholar
  115. Koike T, Kitajima S, Yu Y, Li Y, Nishijima K, Liu E, Sun H, Waqar AB, Shibata N, Inoue T, Wang Y, Zhang B, Kobayashi J, Morimoto M, Saku K, Watanabe T, Fan J (2009) Expression of human apoAII in transgenic rabbits leads to dyslipidemia: a new model for combined hyperlipidemia. Arterioscler Thromb Vasc Biol 29(12):2047–2053.  https://doi.org/10.1161/atvbaha.109.190264 CrossRefPubMedGoogle Scholar
  116. Kourtzelis I, Magnusson PU, Kotlabova K, Lambris JD, Chavakis T (2015) Regulation of instant blood mediated inflammatory reaction (IBMIR) in pancreatic islet xeno-transplantation: points for therapeutic interventions. Adv Exp Med Biol 865:171–188.  https://doi.org/10.1007/978-3-319-18603-0_11 CrossRefPubMedGoogle Scholar
  117. Kwon DN, Lee K, Kang MJ, Choi YJ, Park C, Whyte JJ, Brown AN, Kim JH, Samuel M, Mao J, Park KW, Murphy CN, Prather RS, Kim JH (2013) Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 3:1981.  https://doi.org/10.1038/srep01981 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Larcher T, Lafoux A, Tesson L, Remy S, Thepenier V, Francois V, Le Guiner C, Goubin H, Dutilleul M, Guigand L, Toumaniantz G, De Cian A, Boix C, Renaud JB, Cherel Y, Giovannangeli C, Concordet JP, Anegon I, Huchet C (2014) Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy. PLoS One 9(10):e110371.  https://doi.org/10.1371/journal.pone.0110371 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Lathe R, Clark AJ, Archibald AL, Bishop JO, Simons P, Wilmut I (1986) Novel products from livestock. In: Smith C, King J, Mckay J (eds) Exploiting new technologies in animal breeding: genetic developments. Clarendon Press, Oxford, pp 91–102Google Scholar
  120. Le Bas-Bernardet S, Tillou X, Branchereau J, Dilek N, Poirier N, Chatelais M, Charreau B, Minault D, Hervouet J, Renaudin K, Crossan C, Scobie L, Takeuchi Y, Diswall M, Breimer ME, Klar N, Daha MR, Simioni P, Robson SC, Nottle MB, Salvaris EJ, Cowan PJ, d’Apice AJ, Sachs DH, Yamada K, Lagutina I, Duchi R, Perota A, Lazzari G, Galli C, Cozzi E, Soulillou JP, Vanhove B, Blancho G (2015) Bortezomib, C1-inhibitor and plasma exchange do not prolong the survival of multi-transgenic GalT-KO pig kidney xenografts in baboons. Am J Transplant 15(2):358–370.  https://doi.org/10.1111/ajt.12988 CrossRefPubMedGoogle Scholar
  121. Lee HJ, Lee BC, Kim YH, Paik NW, Rho HM (2011) Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor. Reprod Domestic Anim 46(2):325–332.  https://doi.org/10.1111/j.1439-0531.2010.01670.x CrossRefGoogle Scholar
  122. Leuchs S, Saalfrank A, Merkl C, Flisikowska T, Edlinger M, Durkovic M, Rezaei N, Kurome M, Zakhartchenko V, Kessler B, Flisikowski K, Kind A, Wolf E, Schnieke A (2012) Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One 7(10):e43323.  https://doi.org/10.1371/journal.pone.0043323 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Li S, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Saur D, Kind A, Wolf E, Flisikowski K, Schnieke A (2014) Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS One 9(7):e102455.  https://doi.org/10.1371/journal.pone.0102455 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Li S, Edlinger M, Saalfrank A, Flisikowski K, Tschukes A, Kurome M, Zakhartchenko V, Kessler B, Saur D, Kind A, Wolf E, Schnieke A, Flisikowska T (2015) Viable pigs with a conditionally-activated oncogenic KRAS mutation. Transgenic Res 24(3):509–517.  https://doi.org/10.1007/s11248-015-9866-8 CrossRefPubMedGoogle Scholar
  125. Li Y, Fuchimoto D, Sudo M, Haruta H, Lin QF, Takayama T, Morita S, Nochi T, Suzuki S, Sembon S, Nakai M, Kojima M, Iwamoto M, Hashimoto M, Yoda S, Kunimoto S, Hiro T, Matsumoto T, Mitsumata M, Sugitani M, Saito S, Hirayama A, Onishi A (2016) Development of human-like advanced coronary plaques in low-density lipoprotein receptor knockout pigs and justification for statin treatment before formation of atherosclerotic plaques. J Am Heart Assoc 5(4):e002779.  https://doi.org/10.1161/jaha.115.002779 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci U S A 104(6):1771–1776.  https://doi.org/10.1073/pnas.0610401104 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Liu M, Hodish I, Haataja L, Lara-Lemus R, Rajpal G, Wright J, Arvan P (2010) Proinsulin misfolding and diabetes: mutant INS gene-induced diabetes of youth. Trends Endocrinol Metab 21(11):652–659.  https://doi.org/10.1016/j.tem.2010.07.001 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403.  https://doi.org/10.1126/science.aad5725 CrossRefPubMedGoogle Scholar
  129. Luo Y, Li J, Liu Y, Lin L, Du Y, Li S, Yang H, Vajta G, Callesen H, Bolund L, Sorensen CB (2011) High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20(5):975–988.  https://doi.org/10.1007/s11248-010-9472-8 CrossRefPubMedGoogle Scholar
  130. Luo Y, Lin L, Bolund L, Jensen TG, Sorensen CB (2012) Genetically modified pigs for biomedical research. J Inherit Metab Dis 35(4):695–713.  https://doi.org/10.1007/s10545-012-9475-0 CrossRefPubMedGoogle Scholar
  131. Lutz AJ, Li P, Estrada JL, Sidner RA, Chihara RK, Downey SM, Burlak C, Wang ZY, Reyes LM, Ivary B, Yin F, Blankenship RL, Paris LL, Tector AJ (2013) Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20(1):27–35.  https://doi.org/10.1111/xen.12019 CrossRefPubMedGoogle Scholar
  132. Masaki H, Kato-Itoh M, Umino A, Sato H, Hamanaka S, Kobayashi T, Yamaguchi T, Nishimura K, Ohtaka M, Nakanishi M, Nakauchi H (2015) Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development 142(18):3222–3230.  https://doi.org/10.1242/dev.124016 CrossRefPubMedGoogle Scholar
  133. Matsunari H, Nagashima H, Watanabe M, Umeyama K, Nakano K, Nagaya M, Kobayashi T, Yamaguchi T, Sumazaki R, Herzenberg LA, Nakauchi H (2013) Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc Natl Acad Sci U S A 110(12):4557–4562.  https://doi.org/10.1073/pnas.1222902110 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Matsunari H, Watanabe M, Nakano K, Enosawa S, Umeyama K, Uchikura A, Yashima S, Fukuda T, Klymiuk N, Kurome M, Kessler B, Wuensch A, Zakhartchenko V, Wolf E, Hanazono Y, Nagaya M, Umezawa A, Nakauchi H, Nagashima H (2018) Modeling lethal X-linked genetic disorders in pigs with ensured fertility. Proc Natl Acad Sci U S A 115(4):708–713.  https://doi.org/10.1073/pnas.1715940115 CrossRefPubMedPubMedCentralGoogle Scholar
  135. McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA (2010) Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2 Delta N. Transgenic Res 19(5):869–887.  https://doi.org/10.1007/s11248-010-9362-0 CrossRefPubMedGoogle Scholar
  136. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405(6790):1066–1069.  https://doi.org/10.1038/35016604 CrossRefPubMedGoogle Scholar
  137. McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213.  https://doi.org/10.1242/dmm.018424 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ (2010) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182(10):1251–1261.  https://doi.org/10.1164/rccm.201004-0643OC CrossRefPubMedPubMedCentralGoogle Scholar
  139. Mirabello L, Troisi RJ, Savage SA (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115(7):1531–1543.  https://doi.org/10.1002/cncr.24121 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Miyagawa S, Matsunari H, Watanabe M, Nakano K, Umeyama K, Sakai R, Takayanagi S, Takeishi T, Fukuda T, Yashima S, Maeda A, Eguchi H, Okuyama H, Nagaya M, Nagashima H (2015) Generation of alpha1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs. J Reprod Dev 61(5):449–457.  https://doi.org/10.1262/jrd.2015-058 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Mohiuddin MM, Reichart B, Byrne GW, McGregor CG (2015) Current status of pig heart xenotransplantation. Int J Surg 23(Pt B):234–239.  https://doi.org/10.1016/j.ijsu.2015.08.038 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Mohiuddin MM, Singh AK, Corcoran PC, Thomas ML 3rd, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson RN 3rd, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Commun 7:11138.  https://doi.org/10.1038/ncomms11138 CrossRefGoogle Scholar
  143. Morozov VA, Morozov AV, Rotem A, Barkai U, Bornstein S, Denner J (2015) Extended microbiological characterization of Göttingen minipigs in the context of xenotransplantation: detection and vertical transmission of hepatitis E virus. PLoS One 10(10):e0139893.  https://doi.org/10.1371/journal.pone.0139893 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Mueller NJ, Takeuchi Y, Mattiuzzo G, Scobie L (2011) Microbial safety in xenotransplantation. Curr Opin Organ Transplant 16(2):201–206.  https://doi.org/10.1097/MOT.0b013e32834486f6 CrossRefPubMedGoogle Scholar
  145. Mulder A, Kardol MJ, Arn JS, Eijsink C, Franke ME, Schreuder GM, Haasnoot GW, Doxiadis II, Sachs DH, Smith DM, Claas FH (2010) Human monoclonal HLA antibodies reveal interspecies crossreactive swine MHC class I epitopes relevant for xenotransplantation. Mol Immunol 47(4):809–815.  https://doi.org/10.1016/j.molimm.2009.10.004 CrossRefPubMedGoogle Scholar
  146. Nagashima H, Matsunari H (2016) Growing human organs in pigs-a dream or reality? Theriogenology 86(1):422–426.  https://doi.org/10.1016/j.theriogenology.2016.04.056 CrossRefPubMedGoogle Scholar
  147. Nakamura A, Takeda S (2011) Mammalian models of Duchenne Muscular Dystrophy: pathological characteristics and therapeutic applications. J Biomed Biotechnol 2011:184393.  https://doi.org/10.1155/2011/184393 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, Naito K, Yamanouchi K, Nishihara M (2014) Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep 4:5635.  https://doi.org/10.1038/srep05635 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Nauck MA, Baller B, Meier JJ (2004) Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes 53(Suppl 3):S190–S196CrossRefPubMedGoogle Scholar
  150. Nelson CE, Hakim CH, Ousterout DG, Thakore PI, Moreb EA, Castellanos Rivera RM, Madhavan S, Pan X, Ran FA, Yan WX, Asokan A, Zhang F, Duan D, Gersbach CA (2016) In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351(6271):403–407.  https://doi.org/10.1126/science.aad5143 CrossRefPubMedGoogle Scholar
  151. Niimi M, Yang D, Kitajima S, Ning B, Wang C, Li S, Liu E, Zhang J, Eugene Chen Y, Fan J (2016) ApoE knockout rabbits: a novel model for the study of human hyperlipidemia. Atherosclerosis 245:187–193.  https://doi.org/10.1016/j.atherosclerosis.2015.12.002 CrossRefPubMedGoogle Scholar
  152. Niu D, Wei HJ, Lin L, George H, Wang T, Lee IH, Zhao HY, Wang Y, Kan Y, Shrock E, Lesha E, Wang G, Luo Y, Qing Y, Jiao D, Zhao H, Zhou X, Wang S, Wei H, Guell M, Church GM, Yang L (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307.  https://doi.org/10.1126/science.aan4187 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Nyunt O, Wu JY, McGown IN, Harris M, Huynh T, Leong GM, Cowley DM, Cotterill AM (2009) Investigating maturity onset diabetes of the young. Clin Biochem Rev 30(2):67–74PubMedPubMedCentralGoogle Scholar
  154. Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser AL, Schwinzer R, Hinkel R, Kupatt C, Niemann H (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16(6):522–534.  https://doi.org/10.1111/j.1399-3089.2009.00556.x CrossRefPubMedGoogle Scholar
  155. Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ, Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS, Samuel M, Zhang Y, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB Jr, Zabner J, Welsh MJ, Stoltz DA (2011) The DeltaF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med 3(74):74ra24.  https://doi.org/10.1126/scitranslmed.3001868 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Ozawa M, Himaki T, Ookutsu S, Mizobe Y, Ogawa J, Miyoshi K, Yabuki A, Fan J, Yoshida M (2015) Production of cloned miniature pigs expressing high levels of human apolipoprotein(a) in plasma. PLoS One 10(7):e0132155.  https://doi.org/10.1371/journal.pone.0132155 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Paris LL, Estrada JL, Li P, Blankenship RL, Sidner RA, Reyes LM, Montgomery JB, Burlak C, Butler JR, Downey SM, Wang ZY, Tector M, Tector AJ (2015) Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein. Xenotransplantation 22(3):203–210.  https://doi.org/10.1111/xen.12164 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Park CG, Bottino R, Hawthorne WJ (2015) Current status of islet xenotransplantation. Int J Surg 23(Pt B):261–266.  https://doi.org/10.1016/j.ijsu.2015.07.703 CrossRefPubMedGoogle Scholar
  159. Perkel JM (2016) Xenotransplantation makes a comeback. Nat Biotechnol 34(1):3–4.  https://doi.org/10.1038/nbt0116-3 CrossRefPubMedGoogle Scholar
  160. Petersen B, Ramackers W, Tiede A, Lucas-Hahn A, Herrmann D, Barg-Kues B, Schuettler W, Friedrich L, Schwinzer R, Winkler M, Niemann H (2009) Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 16(6):486–495.  https://doi.org/10.1111/j.1399-3089.2009.00537.x CrossRefPubMedGoogle Scholar
  161. Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL, Herrmann D, Barg-Kues B, Carnwath JW, Klose J, Tiede A, Friedrich L, Baars W, Schwinzer R, Winkler M, Niemann H (2011) Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18(6):355–368.  https://doi.org/10.1111/j.1399-3089.2011.00674.x CrossRefPubMedGoogle Scholar
  162. Pezzulo AA, Tang XX, Hoegger MJ, Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Banfi B, Horswill AR, Stoltz DA, McCray PB Jr, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487(7405):109–113.  https://doi.org/10.1038/nature11130 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299(5605):411–414.  https://doi.org/10.1126/science.1078942 CrossRefPubMedGoogle Scholar
  164. Pintore L, Paltrinieri S, Vadori M, Besenzon F, Cavicchioli L, De Benedictis GM, Calabrese F, Cozzi E, Nottle MB, Robson SC, Cowan PJ, Castagnaro M (2013) Clinicopathological findings in non-human primate recipients of porcine renal xenografts: quantitative and qualitative evaluation of proteinuria. Xenotransplantation 20(6):449–457.  https://doi.org/10.1111/xen.12063 CrossRefPubMedGoogle Scholar
  165. Plum L, Wunderlich FT, Baudler S, Krone W, Bruning JC (2005) Transgenic and knockout mice in diabetes research: novel insights into pathophysiology, limitations, and perspectives. Physiology 20:152–161.  https://doi.org/10.1152/physiol.00049.2004 CrossRefPubMedGoogle Scholar
  166. Polejaeva IA, Ranjan R, Davies CJ, Regouski M, Hall J, Olsen AL, Meng Q, Rutigliano HM, Dosdall DJ, Angel NA, Sachse FB, Seidel T, Thomas AJ, Stott R, Panter KE, Lee PM, Van Wettere AJ, Stevens JR, Wang Z, Macleod RS, Marrouche NF, White KL (2016) Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor-beta1. J Cardiovasc Electrophysiol 27:1220.  https://doi.org/10.1111/jce.13049 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359(6392):235–237.  https://doi.org/10.1038/359235a0 CrossRefPubMedGoogle Scholar
  168. Prickett M, Jain M (2013) Gene therapy in cystic fibrosis. Transl Res 161(4):255–264.  https://doi.org/10.1016/j.trsl.2012.12.001 CrossRefPubMedGoogle Scholar
  169. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774.  https://doi.org/10.1038/nrc3106 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Rader DJ, Cohen J, Hobbs HH (2003) Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 111(12):1795–1803.  https://doi.org/10.1172/JCI18925 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Rahalkar AR, Hegele RA (2008) Monogenic pediatric dyslipidemias: classification, genetics and clinical spectrum. Mol Genet Metab 93(3):282–294.  https://doi.org/10.1016/j.ymgme.2007.10.007 CrossRefPubMedGoogle Scholar
  172. Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16(3):164–180.  https://doi.org/10.1111/j.1399-3089.2009.00525.x CrossRefPubMedGoogle Scholar
  173. Rangarajan A, Hong SJ, Gifford A, Weinberg RA (2004) Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6(2):171–183.  https://doi.org/10.1016/j.ccr.2004.07.009 CrossRefPubMedGoogle Scholar
  174. Reid SJ, Patassini S, Handley RR, Rudiger SR, McLaughlan CJ, Osmand A, Jacobsen JC, Morton AJ, Weiss A, Waldvogel HJ, MacDonald ME, Gusella JF, Bawden CS, Faull RL, Snell RG (2013) Further molecular characterisation of the OVT73 transgenic sheep model of Huntington’s disease identifies cortical aggregates. J Huntington’s Dis 2(3):279–295.  https://doi.org/10.3233/jhd-130067 CrossRefGoogle Scholar
  175. Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Goke B, Pfeifer A, Wanke R, Wolf E (2010) Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59(5):1228–1238.  https://doi.org/10.2337/db09-0519 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Renner S, Romisch-Margl W, Prehn C, Krebs S, Adamski J, Goke B, Blum H, Suhre K, Roscher AA, Wolf E (2012) Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced beta-cell mass. Diabetes 61(8):2166–2175.  https://doi.org/10.2337/db11-1133 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, Wunsch A, Kessler B, Kurome M, Bahr A, Klymiuk N, Krebs S, Puk O, Nagashima H, Graw J, Blum H, Wanke R, Wolf E (2013) Permanent neonatal diabetes in INSC94Y transgenic pigs. Diabetes 62(5):1505–1511.  https://doi.org/10.2337/db12-1065 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Renner S, Blutke A, Streckel E, Wanke R, Wolf E (2016a) Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models. J Pathol 238(2):345–358.  https://doi.org/10.1002/path.4655 CrossRefPubMedGoogle Scholar
  179. Renner S, Dobenecker B, Blutke A, Zols S, Wanke R, Ritzmann M, Wolf E (2016b) Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86(1):406–421.  https://doi.org/10.1016/j.theriogenology.2016.04.055 CrossRefPubMedGoogle Scholar
  180. Reyes LM, Estrada JL, Wang ZY, Blosser RJ, Smith RF, Sidner RA, Paris LL, Blankenship RL, Ray CN, Miner AC, Tector M, Tector AJ (2014) Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193(11):5751–5757.  https://doi.org/10.4049/jimmunol.1402059 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Rieblinger B, Fischer K, Kind A, Saller BS, Baars W, Schuster M, Wolf-van Buerck L, Schaffler A, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Flisikowski K, Wolf E, Seissler J, Schwinzer R, Schnieke A (2018) Strong xenoprotective function by single-copy transgenes placed sequentially at a permissive locus. Xenotransplantation 25:e12382.  https://doi.org/10.1111/xen.12382 CrossRefPubMedGoogle Scholar
  182. Rogers CS (2016) Genetically engineered livestock for biomedical models. Transgenic Res 25(3):345–359.  https://doi.org/10.1007/s11248-016-9928-6 CrossRefPubMedGoogle Scholar
  183. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ, Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL, Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A, Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr, Zabner J, Prather RS, Welsh MJ (2008) Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897):1837–1841.  https://doi.org/10.1126/science.1163600 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Roussel JC, Moran CJ, Salvaris EJ, Nandurkar HH, d’Apice AJ, Cowan PJ (2008) Pig thrombomodulin binds human thrombin but is a poor cofactor for activation of human protein C and TAFI. Am J Transplant 8(6):1101–1112.  https://doi.org/10.1111/j.1600-6143.2008.02210.x CrossRefPubMedGoogle Scholar
  185. Saalfrank A, Janssen KP, Ravon M, Flisikowski K, Eser S, Steiger K, Flisikowska T, Muller-Fliedner P, Schulze E, Bronner C, Gnann A, Kappe E, Bohm B, Schade B, Certa U, Saur D, Esposito I, Kind A, Schnieke A (2016) A porcine model of osteosarcoma. Oncogenesis 5:e210.  https://doi.org/10.1038/oncsis.2016.19 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Sakata N, Yoshimatsu G, Tsuchiya H, Egawa S, Unno M (2012) Animal models of diabetes mellitus for islet transplantation. Exp Diabetes Res 2012:256707.  https://doi.org/10.1155/2012/256707 CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sang H (2006) Transgenesis sunny-side up. Nat Biotechnol 24(8):955–956.  https://doi.org/10.1038/nbt0806-955 CrossRefPubMedGoogle Scholar
  188. Sapir T, Shternhall K, Meivar-Levy I, Blumenfeld T, Cohen H, Skutelsky E, Eventov-Friedman S, Barshack I, Goldberg I, Pri-Chen S, Ben-Dor L, Polak-Charcon S, Karasik A, Shimon I, Mor E, Ferber S (2005) Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci U S A 102(22):7964–7969.  https://doi.org/10.1073/pnas.0405277102 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, Colman A, Campbell KH (1997) Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278(5346):2130–2133CrossRefPubMedGoogle Scholar
  190. Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, Schachtschneider KM, Seixas FK, Singh K, Wells KD, Walters EM, Prather RS, Counter CM (2015) A genetic porcine model of cancer. PLoS One 10(7):e0128864.  https://doi.org/10.1371/journal.pone.0128864 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, Lopez CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG, Inflammation, Host Response to Injury LSCRP (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110(9):3507–3512.  https://doi.org/10.1073/pnas.1222878110 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Seol JG, Kim SH, Jin D, Hong SP, Yoo JY, Choi KM, Park YC, Yun YJ, Park KW, Heo JY (2010) Production of transgenic cloned miniature pigs with membrane-bound human Fas ligand (FasL) by somatic cell nuclear transfer. Nat Preced http://hdlhandlenet/10101/npre201045391Google Scholar
  193. Sharp NJ, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL, Kettle S, Hung WY, Constantinou CD, Dykstra MJ, Roses AD et al (1992) An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 13(1):115–121CrossRefPubMedGoogle Scholar
  194. Shimatsu Y, Horii W, Nunoya T, Iwata A, Fan J, Ozawa M (2016) Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer. Exp Anim 65(1):37–43.  https://doi.org/10.1538/expanim.15-0057 CrossRefPubMedGoogle Scholar
  195. Sieren JC, Meyerholz DK, Wang XJ, Davis BT, Newell JD Jr, Hammond E, Rohret JA, Rohret FA, Struzynski JT, Goeken JA, Naumann PW, Leidinger MR, Taghiyev A, Van Rheeden R, Hagen J, Darbro BW, Quelle DE, Rogers CS (2014) Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest 124(9):4052–4066.  https://doi.org/10.1172/jci75447 CrossRefPubMedPubMedCentralGoogle Scholar
  196. Soutar AK (2011) Unexpected roles for PCSK9 in lipid metabolism. Curr Opin Lipidol 22(3):192–196.  https://doi.org/10.1097/MOL.0b013e32834622b5 CrossRefPubMedGoogle Scholar
  197. Spurney CF (2011) Cardiomyopathy of Duchenne muscular dystrophy: current understanding and future directions. Muscle Nerve 44(1):8–19.  https://doi.org/10.1002/mus.22097 CrossRefPubMedGoogle Scholar
  198. Srivastava R, Khan AA, Huang J, Nesburn AB, Wechsler SL, BenMohamed L (2015) A herpes simplex virus type 1 human asymptomatic CD8+ T-cell epitopes-based vaccine protects against ocular herpes in a “humanized” HLA transgenic rabbit model. Invest Ophthalmol Vis Sci 56(6):4013–4028.  https://doi.org/10.1167/iovs.15-17074 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Stevenson RG, DeWitt WF (1973) An unusual case of lymphosarcoma in a pig. Canadian Vet J 14(6):139–141Google Scholar
  200. Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB Jr, Zabner J, Welsh MJ (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2(29):29ra31.  https://doi.org/10.1126/scitranslmed.3000928 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Stoltz DA, Rokhlina T, Ernst SE, Pezzulo AA, Ostedgaard LS, Karp PH, Samuel MS, Reznikov LR, Rector MV, Gansemer ND, Bouzek DC, Alaiwa MH, Hoegger MJ, Ludwig PS, Taft PJ, Wallen TJ, Wohlford-Lenane C, McMenimen JD, Chen JH, Bogan KL, Adam RJ, Hornick EE, Nelson GA, Hoffman EA, Chang EH, Zabner J, McCray PB Jr, Prather RS, Meyerholz DK, Welsh MJ (2013) Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest 123(6):2685–2693.  https://doi.org/10.1172/JCI68867 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Stoltz DA, Meyerholz DK, Welsh MJ (2015) Origins of cystic fibrosis lung disease. N Engl J Med 372(4):351–362.  https://doi.org/10.1056/NEJMra1300109 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Streckel E, Braun-Reichhart C, Herbach N, Dahlhoff M, Kessler B, Blutke A, Bahr A, Ubel N, Eddicks M, Ritzmann M, Krebs S, Goke B, Blum H, Wanke R, Wolf E, Renner S (2015) Effects of the glucagon-like peptide-1 receptor agonist liraglutide in juvenile transgenic pigs modeling a pre-diabetic condition. J Transl Med 13:73.  https://doi.org/10.1186/s12967-015-0431-2 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Stump KC, Swindle MM, Saudek CD, Strandberg JD (1988) Pancreatectomized swine as a model of diabetes mellitus. Lab Anim Sci 38(4):439–443PubMedGoogle Scholar
  205. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, Maesner C, Wu EY, Xiao R, Ran FA, Cong L, Zhang F, Vandenberghe LH, Church GM, Wagers AJ (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411.  https://doi.org/10.1126/science.aad5177 CrossRefPubMedGoogle Scholar
  206. Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110(41):16526–16531.  https://doi.org/10.1073/pnas.1310478110 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Tang X, Wang G, Liu X, Han X, Li Z, Ran G, Li Z, Song Q, Ji Y, Wang H, Wang Y, Ouyang H, Pang D (2015) Overexpression of porcine lipoprotein-associated phospholipase A2 in swine. Biochem Biophys Res Commun 465(3):507–511.  https://doi.org/10.1016/j.bbrc.2015.08.048 CrossRefPubMedGoogle Scholar
  208. Taylor FB Jr, Peer GT, Lockhart MS, Ferrell G, Esmon CT (2001) Endothelial cell protein C receptor plays an important role in protein C activation in vivo. Blood 97(6):1685–1688CrossRefPubMedGoogle Scholar
  209. Tuggle KL, Birket SE, Cui X, Hong J, Warren J, Reid L, Chambers A, Ji D, Gamber K, Chu KK, Tearney G, Tang LP, Fortenberry JA, Du M, Cadillac JM, Bedwell DM, Rowe SM, Sorscher EJ, Fanucchi MV (2014) Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One 9(3):e91253.  https://doi.org/10.1371/journal.pone.0091253 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Ueno S, Koyasu T, Kominami T, Sakai T, Kondo M, Yasuda S, Terasaki H (2013) Focal cone ERGs of rhodopsin Pro347Leu transgenic rabbits. Vision Res 91:118–123.  https://doi.org/10.1016/j.visres.2013.08.006 CrossRefPubMedGoogle Scholar
  211. Umeyama K, Watanabe M, Saito H, Kurome M, Tohi S, Matsunari H, Miki K, Nagashima H (2009) Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs. Transgenic Res 18(5):697–706.  https://doi.org/10.1007/s11248-009-9262-3 CrossRefPubMedGoogle Scholar
  212. Usui J, Kobayashi T, Yamaguchi T, Knisely AS, Nishinakamura R, Nakauchi H (2012) Generation of kidney from pluripotent stem cells via blastocyst complementation. Am J Pathol 180(6):2417–2426.  https://doi.org/10.1016/j.ajpath.2012.03.007 CrossRefPubMedGoogle Scholar
  213. Vadori M, Cozzi E (2015) The immunological barriers to xenotransplantation. Tissue Antigens 86(4):239–253.  https://doi.org/10.1111/tan.12669 CrossRefPubMedGoogle Scholar
  214. Vadori M, Aron Badin R, Hantraye P, Cozzi E (2015) Current status of neuronal cell xenotransplantation. Int J Surg 23(Pt B):267–272.  https://doi.org/10.1016/j.ijsu.2015.09.052 CrossRefPubMedGoogle Scholar
  215. Wang Y, Yang HQ, Jiang W, Fan NN, Zhao BT, Ou-Yang Z, Liu ZM, Zhao Y, Yang DS, Zhou XY, Shang HT, Wang LL, Xiang PY, Ge LP, Wei H, Lai LX (2015) Transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) by porcine skin for xenogeneic skin grafting. Transgenic Res 24(2):199–211.  https://doi.org/10.1007/s11248-014-9833-9 CrossRefPubMedGoogle Scholar
  216. Wang K, Jin Q, Ruan D, Yang Y, Liu Q, Wu H, Zhou Z, Ouyang Z, Liu Z, Zhao Y, Zhao B, Zhang Q, Peng J, Lai C, Fan N, Liang Y, Lan T, Li N, Wang X, Wang X, Fan Y, Doevendans PA, Sluijter JPG, Liu P, Li X, Lai L (2017) Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res 27(12):2061–2071.  https://doi.org/10.1101/gr.222521.117 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Wei J, Ouyang H, Wang Y, Pang D, Cong NX, Wang T, Leng B, Li D, Li X, Wu R, Ding Y, Gao F, Deng Y, Liu B, Li Z, Lai L, Feng H, Liu G, Deng X (2012) Characterization of a hypertriglyceridemic transgenic miniature pig model expressing human apolipoprotein CIII. FEBS J 279(1):91–99.  https://doi.org/10.1111/j.1742-4658.2011.08401.x CrossRefPubMedGoogle Scholar
  218. Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B, Wanke R, Schwinzer R, Seebach JD, Wolf E, Brem G (2009) HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 87(1):35–43.  https://doi.org/10.1097/TP.0b013e318191c784 CrossRefPubMedGoogle Scholar
  219. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, Dwyer KM, Nottle MB, Harrison SJ, d’Apice AJ, Robson SC, Cowan PJ, Gumina RJ (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52(5):958–961.  https://doi.org/10.1016/j.yjmcc.2012.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Whitelaw CB, Sheets TP, Lillico SG, Telugu BP (2016) Engineering large animal models of human disease. J Pathol 238(2):247–256.  https://doi.org/10.1002/path.4648 CrossRefPubMedGoogle Scholar
  221. Wijkstrom M, Bottino R, Iwase H, Hara H, Ekser B, van der Windt D, Long C, Toledo FG, Phelps CJ, Trucco M, Cooper DK, Ayares D (2015) Glucose metabolism in pigs expressing human genes under an insulin promoter. Xenotransplantation 22(1):70–79.  https://doi.org/10.1111/xen.12145 CrossRefPubMedGoogle Scholar
  222. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, de Jonge HR, Scholte BJ (2011) Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibrosis 10(Suppl 2):S152–S171.  https://doi.org/10.1016/s1569-1993(11)60020-9 CrossRefGoogle Scholar
  223. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619):810–813.  https://doi.org/10.1038/385810a0 CrossRefPubMedGoogle Scholar
  224. Winand NJ, Edwards M, Pradhan D, Berian CA, Cooper BJ (1994) Deletion of the dystrophin muscle promoter in feline muscular dystrophy. Neuromuscul Disord 4(5-6):433–445CrossRefPubMedGoogle Scholar
  225. Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23(1):27–38.  https://doi.org/10.1007/s11248-013-9755-y CrossRefPubMedGoogle Scholar
  226. Wolf-van Buerck L, Schuster M, Oduncu FS, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Klymiuk N, Wolf E, Seissler J (2017) LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep 7(1):3572.  https://doi.org/10.1038/s41598-017-03913-4 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, Suzuki K, Bogliotti YS, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilarino M, Parrilla I, Soto DA, Martinez CA, Hishida T, Sanchez-Bautista S, Martinez-Martinez ML, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga EA, Esteban CR, Berggren WT, Nunez Delicado E, Lajara J, Guillen I, Guillen P, Campistol JM, Martinez EA, Ross PJ, Izpisua Belmonte JC (2017) Interspecies chimerism with mammalian pluripotent stem cells. Cell 168(3):473–486.e415.  https://doi.org/10.1016/j.cell.2016.12.036 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Wuensch A, Baehr A, Bongoni AK, Kemter E, Blutke A, Baars W, Haertle S, Zakhartchenko V, Kurome M, Kessler B, Faber C, Abicht JM, Reichart B, Wanke R, Schwinzer R, Nagashima H, Rieben R, Ayares D, Wolf E, Klymiuk N (2014) Regulatory sequences of the porcine THBD gene facilitate endothelial-specific expression of bioactive human thrombomodulin in single- and multitransgenic pigs. Transplantation 97(2):138–147.  https://doi.org/10.1097/TP.0b013e3182a95cbc CrossRefPubMedGoogle Scholar
  229. Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R (2014) Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 21(4):309–323.  https://doi.org/10.1111/xen.12102 CrossRefPubMedGoogle Scholar
  230. Yamakawa H, Nagai T, Harasawa R, Yamagami T, Takahashi J, Ishikawa K, Nomura N, Nagashima H (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45(2):111–118CrossRefGoogle Scholar
  231. Yamanaka S, Yokoo T (2015) Current bioengineering methods for whole kidney regeneration. Stem Cells Int 2015:724047.  https://doi.org/10.1155/2015/724047 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Yang L, Guell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J, Cortazio R, Wilkinson RA, Fishman JA, Church G (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264):1101–1104.  https://doi.org/10.1126/science.aad1191 CrossRefPubMedGoogle Scholar
  233. Yazaki S, Iwamoto M, Onishi A, Miwa Y, Hashimoto M, Oishi T, Suzuki S, Fuchimoto D, Sembon S, Furusawa T, Liu D, Nagasaka T, Kuzuya T, Ogawa H, Yamamoto K, Iwasaki K, Haneda M, Maruyama S, Kobayashi T (2012) Production of cloned pigs expressing human thrombomodulin in endothelial cells. Xenotransplantation 19(2):82–91.  https://doi.org/10.1111/j.1399-3089.2012.00696.x CrossRefPubMedGoogle Scholar
  234. Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, Takahashi M, Terada Y, Eto Y, Kawamura T, Osumi N, Hosoya T (2005) Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci U S A 102(9):3296–3300.  https://doi.org/10.1073/pnas.0406878102 CrossRefPubMedPubMedCentralGoogle Scholar
  235. Yokote S, Matsunari H, Iwai S, Yamanaka S, Uchikura A, Fujimoto E, Matsumoto K, Nagashima H, Kobayashi E, Yokoo T (2015) Urine excretion strategy for stem cell-generated embryonic kidneys. Proc Natl Acad Sci U S A 112(42):12980–12985.  https://doi.org/10.1073/pnas.1507803112 CrossRefPubMedPubMedCentralGoogle Scholar
  236. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46(5):887–894CrossRefPubMedGoogle Scholar
  237. Yuan L, Sui T, Chen M, Deng J, Huang Y, Zeng J, Lv Q, Song Y, Li Z, Lai L (2016) CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci Rep 6:22024.  https://doi.org/10.1038/srep22024 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol 27(8):1706–1721.  https://doi.org/10.1161/ATVBAHA.107.142570 CrossRefPubMedGoogle Scholar
  239. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8(10):806–823.  https://doi.org/10.1038/nrd2137 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gene Centre and Department of Veterinary SciencesLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.German Centre for Diabetes Research (DZD)NeuherbergGermany
  3. 3.TUM School of Life Sciences WeihenstephanTechnische Universität MünchenMunichGermany

Personalised recommendations